{"title":"Assembling interferometers and in-situ observation of ambient environments and solid–liquid interfaces","authors":"Yuki Kimura , Kenta Murayama , Tomoya Yamazaki , Takao Maki","doi":"10.1016/j.pcrysgrow.2016.04.022","DOIUrl":null,"url":null,"abstract":"<div><p><span>The principle of interferometers and its applicability to our research on crystal growth can be understood through assembling interferometers. In particular, practical skills such as techniques for assembling interferometers and selecting </span>optical components, which are not covered by general textbooks, can be learned.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 400-403"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The principle of interferometers and its applicability to our research on crystal growth can be understood through assembling interferometers. In particular, practical skills such as techniques for assembling interferometers and selecting optical components, which are not covered by general textbooks, can be learned.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.