{"title":"Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps.","authors":"Kakoli Mitra, Joachim Frank","doi":"10.1146/annurev.biophys.35.040405.101950","DOIUrl":null,"url":null,"abstract":"<p><p>Single-particle cryo-electron microscopy (cryo-EM) is the method of choice for studying the dynamics of macromolecular machines both at a phenomenological and, increasingly, at the molecular level, with the advent of high-resolution component X-ray structures and of progressively improving fitting algorithms. Cryo-EM has shed light on the structure of the ribosome during the four steps of translation: initiation, elongation, termination, and recycling. Interpretation of cryo-EM reconstructions of the ribosome in quasi-atomic detail reveals a picture in which the ribosome uses RNA not only to catalyze chemical reactions, but also as a means for signal transduction over large distances.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"35 ","pages":"299-317"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.35.040405.101950","citationCount":"137","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.35.040405.101950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 137
Abstract
Single-particle cryo-electron microscopy (cryo-EM) is the method of choice for studying the dynamics of macromolecular machines both at a phenomenological and, increasingly, at the molecular level, with the advent of high-resolution component X-ray structures and of progressively improving fitting algorithms. Cryo-EM has shed light on the structure of the ribosome during the four steps of translation: initiation, elongation, termination, and recycling. Interpretation of cryo-EM reconstructions of the ribosome in quasi-atomic detail reveals a picture in which the ribosome uses RNA not only to catalyze chemical reactions, but also as a means for signal transduction over large distances.