Contrasting effects of phosphatidylinositol- and phosphatidylcholine-specific phospholipase C on apoptosis in cultured endothelial cells.

Xia Liu, Qitao Zhao, Satohiko Araki, Shangli Zhang, Junying Miao
{"title":"Contrasting effects of phosphatidylinositol- and phosphatidylcholine-specific phospholipase C on apoptosis in cultured endothelial cells.","authors":"Xia Liu,&nbsp;Qitao Zhao,&nbsp;Satohiko Araki,&nbsp;Shangli Zhang,&nbsp;Junying Miao","doi":"10.1080/10623320600760423","DOIUrl":null,"url":null,"abstract":"<p><p>In the authors' previous studies, they found that phosphatidylcholine-specific phospholipase C (PC-PLC) and phosphatidylinositol-specific phospholipase C (PI-PLC) played contrary roles in the apoptosis of vascular endothelial cells (VECs), but the mechanism underlying the phenomenon remains unclear. To address this question, in this study, the authors investigated the changes of cell cycle distribution, the expression of P53, and the phosphorylation of Akt when PI-PLC was inhibited by its specific inhibitor compound 48/80, and they also examined the phosphorylation of Akt when VEC apoptosis was inhibited by D609, a specific inhibitor of PC-PLC. The results showed that suppression of PI-PLC promoted VEC apoptosis by inhibiting Akt phosphorylation, elevating P53 expression, and affecting the cell cycle distribution. Contrarily, suppression of PC-PLC promoted the phosphorylation of Akt. The data suggested that PI-PLC and PC-PLC might control the apoptosis by jointly regulating Akt phosphorylation, P53 expression, and affecting cell cycle in VECs.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320600760423","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320600760423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In the authors' previous studies, they found that phosphatidylcholine-specific phospholipase C (PC-PLC) and phosphatidylinositol-specific phospholipase C (PI-PLC) played contrary roles in the apoptosis of vascular endothelial cells (VECs), but the mechanism underlying the phenomenon remains unclear. To address this question, in this study, the authors investigated the changes of cell cycle distribution, the expression of P53, and the phosphorylation of Akt when PI-PLC was inhibited by its specific inhibitor compound 48/80, and they also examined the phosphorylation of Akt when VEC apoptosis was inhibited by D609, a specific inhibitor of PC-PLC. The results showed that suppression of PI-PLC promoted VEC apoptosis by inhibiting Akt phosphorylation, elevating P53 expression, and affecting the cell cycle distribution. Contrarily, suppression of PC-PLC promoted the phosphorylation of Akt. The data suggested that PI-PLC and PC-PLC might control the apoptosis by jointly regulating Akt phosphorylation, P53 expression, and affecting cell cycle in VECs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂酰肌醇和磷脂酰胆碱特异性磷脂酶C对培养内皮细胞凋亡的影响。
作者在前期研究中发现,磷脂酰胆碱特异性磷脂酶C (PC-PLC)和磷脂酰肌醇特异性磷脂酶C (PI-PLC)在血管内皮细胞(VECs)凋亡中发挥相反的作用,但其机制尚不清楚。为了解决这个问题,在本研究中,作者研究了PI-PLC被其特异性抑制剂化合物48/80抑制时细胞周期分布、P53表达和Akt磷酸化的变化,并研究了PC-PLC特异性抑制剂D609抑制VEC凋亡时Akt磷酸化的变化。结果表明,抑制PI-PLC可通过抑制Akt磷酸化、上调P53表达、影响细胞周期分布等途径促进VEC细胞凋亡。相反,PC-PLC的抑制促进了Akt的磷酸化。提示PI-PLC和PC-PLC可能通过共同调控Akt磷酸化、P53表达、影响VECs细胞周期来调控凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels. Interaction of estrogen and tumor necrosis factor alpha in endothelial cell migration and early stage of angiogenesis. Endothelial progenitor cells in patients with severe peripheral arterial disease. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1