31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels.
I Ringel, S Lecht, M Sterin, P I Lelkes, P Lazarovici
{"title":"31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels.","authors":"I Ringel, S Lecht, M Sterin, P I Lelkes, P Lazarovici","doi":"10.1080/10623320802487874","DOIUrl":null,"url":null,"abstract":"<p><p>In the accompanying study, the authors presented phosphometabolite patterns of endothelial cells grown under three-dimensional (3D) conditions using (31)P magnetic resonance spectroscopy (MRS). Here the authors describe the effect of nonsteroidal anti-inflammatory drugs (NSAIDs), using this enabling platform technology, which is relevant for evaluating drug effects in tissue-engineered endothelial constructs. Treatment with indomethacin significantly changed the phosphometabolite fingerprint in this endothelial model, by, respectively, increasing (81%) and decreasing (42%) glycerophosphocholine (GPC) and phosphomonoesters (PM). Furthermore, a safer approach using a NSAID prodrug was also demonstrated in this study with a indomethacin phospholipid-derived prodrug (DP-155). Like the parental drug, DP-155 increased and decreased the levels of GPC and PM by 100% and 20%, respectively. These changes represent useful biomarkers to monitor NSAID effects on endothelized tissue-engineered constructs for the purpose of controlling endothelial cell survival and inflammation upon implantation.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"15 5-6","pages":"299-307"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320802487874","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320802487874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the accompanying study, the authors presented phosphometabolite patterns of endothelial cells grown under three-dimensional (3D) conditions using (31)P magnetic resonance spectroscopy (MRS). Here the authors describe the effect of nonsteroidal anti-inflammatory drugs (NSAIDs), using this enabling platform technology, which is relevant for evaluating drug effects in tissue-engineered endothelial constructs. Treatment with indomethacin significantly changed the phosphometabolite fingerprint in this endothelial model, by, respectively, increasing (81%) and decreasing (42%) glycerophosphocholine (GPC) and phosphomonoesters (PM). Furthermore, a safer approach using a NSAID prodrug was also demonstrated in this study with a indomethacin phospholipid-derived prodrug (DP-155). Like the parental drug, DP-155 increased and decreased the levels of GPC and PM by 100% and 20%, respectively. These changes represent useful biomarkers to monitor NSAID effects on endothelized tissue-engineered constructs for the purpose of controlling endothelial cell survival and inflammation upon implantation.