Radical-promoted single-unit monomer insertion (SUMI) [aka. reversible-deactivation radical addition (RDRA)]

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2023-03-01 DOI:10.1016/j.progpolymsci.2023.101648
Cyrille Boyer , Masami Kamigaito , Kotaro Satoh , Graeme Moad
{"title":"Radical-promoted single-unit monomer insertion (SUMI) [aka. reversible-deactivation radical addition (RDRA)]","authors":"Cyrille Boyer ,&nbsp;Masami Kamigaito ,&nbsp;Kotaro Satoh ,&nbsp;Graeme Moad","doi":"10.1016/j.progpolymsci.2023.101648","DOIUrl":null,"url":null,"abstract":"<div><p>We survey progress in the development of the processes for radical-promoted single-unit monomer insertion (SUMI) or reversible deactivation radical addition (RDRA), focussing on aminoxyl- [nitroxide-] mediated SUMI (NM-SUMI), reversible-addition-fragmentation chain transfer-SUMI (RAFT-SUMI) and atom-transfer radical addition (ATRA). Radical-promoted thiol-ene processes are also briefly discussed. We detail the strategies for achieving selectivity with respect to single unit insertion vs oligomerization and look critically at progress towards discrete oligomer synthesis by consecutive SUMI reactions. We examine the use of SUMI to install α-, ω- or mid-chain-functionality in RDRP-synthesized polymers. Finally, we examine the prospects for using radical-promoted SUMI in the synthesis of sequence-defined polymers where monomer placement is precisely defined to the level of the individual monomer units in the polymer chain.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"138 ","pages":"Article 101648"},"PeriodicalIF":26.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

We survey progress in the development of the processes for radical-promoted single-unit monomer insertion (SUMI) or reversible deactivation radical addition (RDRA), focussing on aminoxyl- [nitroxide-] mediated SUMI (NM-SUMI), reversible-addition-fragmentation chain transfer-SUMI (RAFT-SUMI) and atom-transfer radical addition (ATRA). Radical-promoted thiol-ene processes are also briefly discussed. We detail the strategies for achieving selectivity with respect to single unit insertion vs oligomerization and look critically at progress towards discrete oligomer synthesis by consecutive SUMI reactions. We examine the use of SUMI to install α-, ω- or mid-chain-functionality in RDRP-synthesized polymers. Finally, we examine the prospects for using radical-promoted SUMI in the synthesis of sequence-defined polymers where monomer placement is precisely defined to the level of the individual monomer units in the polymer chain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由基促进单单元单体插入(SUMI)[又名;可逆失活自由基加成[
本文综述了自由基促进单体插入(SUMI)或可逆失活自由基加成(RDRA)过程的发展进展,重点介绍了氨基氧基-[硝基]介导的SUMI (NM-SUMI)、可逆加成-碎片链转移-SUMI (RAFT-SUMI)和原子转移自由基加成(ATRA)过程。还简要讨论了自由基促进的硫醇烯工艺。我们详细介绍了在单单元插入与寡聚化方面实现选择性的策略,并通过连续的SUMI反应对离散寡聚物合成进行了批判性的研究。我们研究了使用SUMI在rdrp合成的聚合物中安装α-, ω-或中链功能。最后,我们研究了在合成序列定义聚合物中使用自由基促进的SUMI的前景,其中单体位置精确定义为聚合物链中单个单体单元的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1