{"title":"A review of Z-type hexaferrite based magnetic nanomaterials: Structure, synthesis, properties, and potential applications","authors":"Kirti Singha , Rohit Jasrotia , Himanshi , Louis WY. Liu , Jyoti Prakash , Ankit Verma , Pawan Kumar , Sachin Kumar Godara , Monika Chandel , Virender Pratap Singh , Sourbh Thakur , Ranjan Das , Abhishek Kandwal , H.H. Hegazy , Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2023.100404","DOIUrl":null,"url":null,"abstract":"<div><p>The vast range of uses that Z-type hexaferrite<span> nanoparticles<span> (ZTHNPs) offer in a variety of fields, including antennas, microwave absorption, and biomedicine has sparked a lot of scientific interest in these nanoparticles. Z-type hexaferrite possesses a soft magnetic character, planar magneto-crystalline anisotropy, and acceptable ultra-high frequency electromagnetic characteristics. The major topics of this review paper are the crystal structure, synthesis strategies (sol-gel, co-precipitation, solid-state reaction, hydrothermal techniques), characteristics, and prospective uses of Z-type hexaferrite, with a special emphasis on recently published research. Firstly, the crystal structure and most prominent synthesis strategies of ZTHNPs, with their benefits and drawbacks, are described. Secondly, we focused more of our attention on the magnetic, structural, and electromagnetic behaviours of this material. The final section discusses the prospective applications of these novel multifunctional materials.</span></span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"70 ","pages":"Article 100404"},"PeriodicalIF":9.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000158","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
The vast range of uses that Z-type hexaferrite nanoparticles (ZTHNPs) offer in a variety of fields, including antennas, microwave absorption, and biomedicine has sparked a lot of scientific interest in these nanoparticles. Z-type hexaferrite possesses a soft magnetic character, planar magneto-crystalline anisotropy, and acceptable ultra-high frequency electromagnetic characteristics. The major topics of this review paper are the crystal structure, synthesis strategies (sol-gel, co-precipitation, solid-state reaction, hydrothermal techniques), characteristics, and prospective uses of Z-type hexaferrite, with a special emphasis on recently published research. Firstly, the crystal structure and most prominent synthesis strategies of ZTHNPs, with their benefits and drawbacks, are described. Secondly, we focused more of our attention on the magnetic, structural, and electromagnetic behaviours of this material. The final section discusses the prospective applications of these novel multifunctional materials.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.