Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: a potential medicinal treatment for uterine fibroids.
Salama A Salama, Abdelhakim Ben Nasr, Raghvendra K Dubey, Ayman Al-Hendy
{"title":"Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: a potential medicinal treatment for uterine fibroids.","authors":"Salama A Salama, Abdelhakim Ben Nasr, Raghvendra K Dubey, Ayman Al-Hendy","doi":"10.1016/j.jsgi.2006.09.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The current study sought to investigate the effect of the estrogen metabolite 2-methoxyestradiol (2-MeOHE(2)) on apoptosis, cell proliferation, and collagen synthesis in human and rat leiomyoma cells.</p><p><strong>Methods: </strong>[(3)H] thymidine and [(3)H] proline incorporation studies were conducted. The expression of vascular endothelial growth factor (VEGF), cyclin D1, Bcl-2, and Bax were evaluated by Western blot. Flow cytometry analysis was used to study the effect of 2-MeOHE(2) on apoptosis and the cell cycle.</p><p><strong>Results: </strong>Compared with untreated controls, treatment of rat leiomyoma (ELT3) cells with 2-MeOHE(2) (0.1, 1, 2, 5, or 10 muM) reduced cell proliferation by 17%, 52%, 61%, 73%, and 79%, respectively (P <.05). Similarly, in human uterine leiomyoma cell line (huLM) cells, proliferation was reduced by 4%, 18%, 37%, 41%, and 51%, respectively. 2-MeOHE(2) also caused a concentration-dependent inhibition of collagen synthesis by 4%, 16%, 23%, 51%, and 70%, respectively, in huLM cells (P <.05). Cell cycle analysis indicated that 2-MeOHE(2) treatment (1 to 5 muM) in huLM cells resulted in G(2)/M cell cycle arrest and a 45% increase in apoptosis compared with untreated control (P <.05). Western immunoblotting analysis indicated that 2-MeOHE(2) induces a concentration-dependent reduction in the expression of cyclin D1, Bcl-2, and VEGF proteins in both rat and human leiomyoma cell lines.</p><p><strong>Conclusions: </strong>This study provides the first evidence that 2-MeOHE(2) is a potent antiproliferative/apoptotic and collagen synthesis inhibiting agent in human and rat leiomyoma cells. To the best of our knowledge, this is the first report showing the potential use of 2-methoxyestradiol as a nonsurgical alternative therapy for uterine leiomyomas.</p>","PeriodicalId":17373,"journal":{"name":"Journal of the Society for Gynecologic Investigation","volume":"13 8","pages":"542-50"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jsgi.2006.09.003","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Gynecologic Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jsgi.2006.09.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54
Abstract
Objective: The current study sought to investigate the effect of the estrogen metabolite 2-methoxyestradiol (2-MeOHE(2)) on apoptosis, cell proliferation, and collagen synthesis in human and rat leiomyoma cells.
Methods: [(3)H] thymidine and [(3)H] proline incorporation studies were conducted. The expression of vascular endothelial growth factor (VEGF), cyclin D1, Bcl-2, and Bax were evaluated by Western blot. Flow cytometry analysis was used to study the effect of 2-MeOHE(2) on apoptosis and the cell cycle.
Results: Compared with untreated controls, treatment of rat leiomyoma (ELT3) cells with 2-MeOHE(2) (0.1, 1, 2, 5, or 10 muM) reduced cell proliferation by 17%, 52%, 61%, 73%, and 79%, respectively (P <.05). Similarly, in human uterine leiomyoma cell line (huLM) cells, proliferation was reduced by 4%, 18%, 37%, 41%, and 51%, respectively. 2-MeOHE(2) also caused a concentration-dependent inhibition of collagen synthesis by 4%, 16%, 23%, 51%, and 70%, respectively, in huLM cells (P <.05). Cell cycle analysis indicated that 2-MeOHE(2) treatment (1 to 5 muM) in huLM cells resulted in G(2)/M cell cycle arrest and a 45% increase in apoptosis compared with untreated control (P <.05). Western immunoblotting analysis indicated that 2-MeOHE(2) induces a concentration-dependent reduction in the expression of cyclin D1, Bcl-2, and VEGF proteins in both rat and human leiomyoma cell lines.
Conclusions: This study provides the first evidence that 2-MeOHE(2) is a potent antiproliferative/apoptotic and collagen synthesis inhibiting agent in human and rat leiomyoma cells. To the best of our knowledge, this is the first report showing the potential use of 2-methoxyestradiol as a nonsurgical alternative therapy for uterine leiomyomas.