Lintong Hu , Ping Xiao , Lanlan Xue , Huiqiao Li , Tianyou Zhai
{"title":"The rising zinc anodes for high-energy aqueous batteries","authors":"Lintong Hu , Ping Xiao , Lanlan Xue , Huiqiao Li , Tianyou Zhai","doi":"10.1016/j.enchem.2021.100052","DOIUrl":null,"url":null,"abstract":"<div><p><span>Aqueous zinc-metal batteries have gained widespread attention because of their high safety, large capacity, cost effectiveness, and environmental friendliness<span>. However, zinc anodes have long encountered with dendrite formation, inferior cycle life and low coulombic efficiency, which severely hinder the practical application. Here, the latest advances of zinc metal anodes for aqueous zinc-metal batteries are reviewed. The merits of zinc metal anodes, the reaction mechanisms in different media, and the issues faced are firstly summarized. Then the prominent progresses of zinc anodes in aqueous media are highlighted, including electrolyte optimization, host construction, interface modification, anode structure design, and working model regulation. Finally, the remaining challenges of zinc anodes are fully discussed, and the future perspectives of pursing stable zinc metal anodes by integrating multi-strategies, conducting in </span></span>situ study<span> of zinc plating/stripping behavior, exploring advanced cathode materials, and developing smart devices are also provided.</span></p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"3 2","pages":"Article 100052"},"PeriodicalIF":22.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enchem.2021.100052","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778021000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 59
Abstract
Aqueous zinc-metal batteries have gained widespread attention because of their high safety, large capacity, cost effectiveness, and environmental friendliness. However, zinc anodes have long encountered with dendrite formation, inferior cycle life and low coulombic efficiency, which severely hinder the practical application. Here, the latest advances of zinc metal anodes for aqueous zinc-metal batteries are reviewed. The merits of zinc metal anodes, the reaction mechanisms in different media, and the issues faced are firstly summarized. Then the prominent progresses of zinc anodes in aqueous media are highlighted, including electrolyte optimization, host construction, interface modification, anode structure design, and working model regulation. Finally, the remaining challenges of zinc anodes are fully discussed, and the future perspectives of pursing stable zinc metal anodes by integrating multi-strategies, conducting in situ study of zinc plating/stripping behavior, exploring advanced cathode materials, and developing smart devices are also provided.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage