Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.

Susan Chung, Petras P Dzeja, Randolph S Faustino, Carmen Perez-Terzic, Atta Behfar, Andre Terzic
{"title":"Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.","authors":"Susan Chung,&nbsp;Petras P Dzeja,&nbsp;Randolph S Faustino,&nbsp;Carmen Perez-Terzic,&nbsp;Atta Behfar,&nbsp;Andre Terzic","doi":"10.1038/ncpcardio0766","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiogenesis within embryos or associated with heart repair requires stem cell differentiation into energetically competent, contracting cardiomyocytes. While it is widely accepted that the coordination of genetic circuits with developmental bioenergetics is critical to phenotype specification, the metabolic mechanisms that drive cardiac transformation are largely unknown. Here, we aim to define the energetic requirements for and the metabolic microenvironment needed to support the cardiac differentiation of embryonic stem cells. We demonstrate that anaerobic glycolytic metabolism, while sufficient for embryonic stem cell homeostasis, must be transformed into the more efficient mitochondrial oxidative metabolism to secure cardiac specification and excitation-contraction coupling. This energetic switch was programmed by rearrangement of the metabolic transcriptome that encodes components of glycolysis, fatty acid oxidation, the Krebs cycle, and the electron transport chain. Modifying the copy number of regulators of mitochondrial fusion and fission resulted in mitochondrial maturation and network expansion, which in turn provided an energetic continuum to supply nascent sarcomeres. Disrupting respiratory chain function prevented mitochondrial organization and compromised the energetic infrastructure, causing deficient sarcomerogenesis and contractile malfunction. Thus, establishment of the mitochondrial system and engagement of oxidative metabolism are prerequisites for the differentiation of stem cells into a functional cardiac phenotype. Mitochondria-dependent energetic circuits are thus critical regulators of de novo cardiogenesis and targets for heart regeneration.</p>","PeriodicalId":51263,"journal":{"name":"Nature Clinical Practice. Cardiovascular Medicine","volume":"4 Suppl 1 ","pages":"S60-7"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ncpcardio0766","citationCount":"479","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Clinical Practice. Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/ncpcardio0766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 479

Abstract

Cardiogenesis within embryos or associated with heart repair requires stem cell differentiation into energetically competent, contracting cardiomyocytes. While it is widely accepted that the coordination of genetic circuits with developmental bioenergetics is critical to phenotype specification, the metabolic mechanisms that drive cardiac transformation are largely unknown. Here, we aim to define the energetic requirements for and the metabolic microenvironment needed to support the cardiac differentiation of embryonic stem cells. We demonstrate that anaerobic glycolytic metabolism, while sufficient for embryonic stem cell homeostasis, must be transformed into the more efficient mitochondrial oxidative metabolism to secure cardiac specification and excitation-contraction coupling. This energetic switch was programmed by rearrangement of the metabolic transcriptome that encodes components of glycolysis, fatty acid oxidation, the Krebs cycle, and the electron transport chain. Modifying the copy number of regulators of mitochondrial fusion and fission resulted in mitochondrial maturation and network expansion, which in turn provided an energetic continuum to supply nascent sarcomeres. Disrupting respiratory chain function prevented mitochondrial organization and compromised the energetic infrastructure, causing deficient sarcomerogenesis and contractile malfunction. Thus, establishment of the mitochondrial system and engagement of oxidative metabolism are prerequisites for the differentiation of stem cells into a functional cardiac phenotype. Mitochondria-dependent energetic circuits are thus critical regulators of de novo cardiogenesis and targets for heart regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体氧化代谢是干细胞心脏分化所必需的。
胚胎内的心脏发生或与心脏修复相关的心脏发生需要干细胞分化为具有能量能力的收缩心肌细胞。虽然人们普遍认为遗传回路与发育生物能量学的协调对表型规范至关重要,但驱动心脏转化的代谢机制在很大程度上是未知的。在这里,我们的目标是定义支持胚胎干细胞心脏分化所需的能量需求和代谢微环境。我们证明,厌氧糖酵解代谢虽然足以维持胚胎干细胞的稳态,但必须转化为更有效的线粒体氧化代谢,以确保心脏规范和兴奋-收缩耦合。这种能量转换是通过代谢转录组的重排来编程的,代谢转录组编码糖酵解、脂肪酸氧化、克雷布斯循环和电子传递链的成分。修改线粒体融合和裂变调节因子的拷贝数导致线粒体成熟和网络扩张,这反过来提供了一个能量连续体来供应新生的肌瘤。呼吸链功能的破坏阻碍了线粒体组织,损害了能量基础设施,导致肌肉增生缺陷和收缩功能障碍。因此,线粒体系统的建立和氧化代谢的参与是干细胞向功能性心脏表型分化的先决条件。因此,线粒体依赖的能量回路是新生心脏发生的关键调节因子和心脏再生的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. Prevalence of allergen sensitization in 1000 adults in Saskatchewan. Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers. A cross sectional - observational study. Imaging left ventricular remodeling: targeting the neurohumoral axis. Targeted imaging of myocardial damage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1