{"title":"Conformational dynamics and ensembles in protein folding.","authors":"Victor Muñoz","doi":"10.1146/annurev.biophys.36.040306.132608","DOIUrl":null,"url":null,"abstract":"<p><p>Recent experimental developments are changing the ways we interpret experimental data in protein folding, leading to a closer connection with theory and an improved understanding of some long-standing questions in the field. We now have a basic roadmap of the types of polypeptide motions and timescales that are relevant to the various folding stages. The folding barriers estimated with a variety of independent methods are consistently small, indicating that several fast-folding proteins are near or within the downhill folding regime. Finally, the structural and statistical analysis of global downhill folding is promising to open a new avenue of research in which folding mechanisms and the networks of noncovalent interactions that stabilize native structures are directly resolved in equilibrium experiments of nonmutated proteins.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"36 ","pages":"395-412"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.36.040306.132608","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.36.040306.132608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117
Abstract
Recent experimental developments are changing the ways we interpret experimental data in protein folding, leading to a closer connection with theory and an improved understanding of some long-standing questions in the field. We now have a basic roadmap of the types of polypeptide motions and timescales that are relevant to the various folding stages. The folding barriers estimated with a variety of independent methods are consistently small, indicating that several fast-folding proteins are near or within the downhill folding regime. Finally, the structural and statistical analysis of global downhill folding is promising to open a new avenue of research in which folding mechanisms and the networks of noncovalent interactions that stabilize native structures are directly resolved in equilibrium experiments of nonmutated proteins.