Jie Jin , Shiwei Li , Xianqiang Peng , Wei Liu , Chenlu Zhang , Yan Yang , Lanfang Han , Ziwen Du , Ke Sun , Xiangke Wang
{"title":"HNO3 modified biochars for uranium (VI) removal from aqueous solution","authors":"Jie Jin , Shiwei Li , Xianqiang Peng , Wei Liu , Chenlu Zhang , Yan Yang , Lanfang Han , Ziwen Du , Ke Sun , Xiangke Wang","doi":"10.1016/j.biortech.2018.02.022","DOIUrl":null,"url":null,"abstract":"<div><p>The HNO<sub>3</sub> treatment was used to chemically modify the biochars produced from wheat straw (WH) and cow manure for U(VI) removal from aqueous solution. Macroscopic experiments proved that the enrichment of U(VI) on the biochars was regulated by surface complexation and electrostatic interactions. FTIR and XPS analyses confirmed that the highly efficient adsorption of U(VI) was due to the carboxyl groups on the biochar surfaces. The reducing agents of the R-CH<sub>2</sub>OH groups facilitated U(VI) adsorption on the untreated biochars. Owing to the higher contents of surface COO groups and more negative surface charge, the modified biochars showed enhanced U(VI) adsorption ability than the untreated ones. The maximum adsorption capacity of U(VI) by the oxidized WH was calculated to be 355.6 mg/g at pH 4.5 and 298 K, which was an improvement of 40 times relative to the untreated WH and was higher than that of most carbon-based adsorbents.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biortech.2018.02.022","citationCount":"162","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852418301962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 162
Abstract
The HNO3 treatment was used to chemically modify the biochars produced from wheat straw (WH) and cow manure for U(VI) removal from aqueous solution. Macroscopic experiments proved that the enrichment of U(VI) on the biochars was regulated by surface complexation and electrostatic interactions. FTIR and XPS analyses confirmed that the highly efficient adsorption of U(VI) was due to the carboxyl groups on the biochar surfaces. The reducing agents of the R-CH2OH groups facilitated U(VI) adsorption on the untreated biochars. Owing to the higher contents of surface COO groups and more negative surface charge, the modified biochars showed enhanced U(VI) adsorption ability than the untreated ones. The maximum adsorption capacity of U(VI) by the oxidized WH was calculated to be 355.6 mg/g at pH 4.5 and 298 K, which was an improvement of 40 times relative to the untreated WH and was higher than that of most carbon-based adsorbents.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.