{"title":"The need for animal models in small-vessel brain disease.","authors":"Rui Hua, Wolfgang Walz","doi":"10.1615/critrevneurobiol.v18.i1-2.20","DOIUrl":null,"url":null,"abstract":"<p><p>An argument is made that small-vessel stroke, which usually results in lacunar infarction, is a serious medical problem. Therefore, it is surprising that only a few animal models exist that mimic small-vessel stroke and that these models have not been used for a systematic investigation of the genesis of lacunar infarctions. We make a case that the modified pial vessel class II disruption model mimics certain important aspects of lacunar infarctions, namely cavitation caused specifically by ischemia of smaller vessels. We found evidence that upregulation of inflammatory properties within a few days of inducing lesions prevents repopulation of the lesion with reactive astrocytes. We propose that this is the key mechanism by which cavitation occurs weeks later. We also found that treatment with minocycline after induction of lesions but before cavitation prevented the formation of the fluid-filled cavity. Rather than being walled off, the lesion apparently became part of the brain parenchyma and consisted of reactive astrocytes. We conclude that this new model can be used to investigate the mechanism of lacune formation and its prevention.</p>","PeriodicalId":10778,"journal":{"name":"Critical reviews in neurobiology","volume":"18 1-2","pages":"5-11"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/critrevneurobiol.v18.i1-2.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
An argument is made that small-vessel stroke, which usually results in lacunar infarction, is a serious medical problem. Therefore, it is surprising that only a few animal models exist that mimic small-vessel stroke and that these models have not been used for a systematic investigation of the genesis of lacunar infarctions. We make a case that the modified pial vessel class II disruption model mimics certain important aspects of lacunar infarctions, namely cavitation caused specifically by ischemia of smaller vessels. We found evidence that upregulation of inflammatory properties within a few days of inducing lesions prevents repopulation of the lesion with reactive astrocytes. We propose that this is the key mechanism by which cavitation occurs weeks later. We also found that treatment with minocycline after induction of lesions but before cavitation prevented the formation of the fluid-filled cavity. Rather than being walled off, the lesion apparently became part of the brain parenchyma and consisted of reactive astrocytes. We conclude that this new model can be used to investigate the mechanism of lacune formation and its prevention.