Comparison of effects of epigallocatechin-3-gallate on hypoxia injury to human umbilical vein, RF/6A, and ECV304 cells induced by Na(2)S(2)O(4).

Hai-ning Yu, Xiao-Li Ma, Jun-guo Yang, Chang-chun Shi, Sheng-rong Shen, Guo-qing He
{"title":"Comparison of effects of epigallocatechin-3-gallate on hypoxia injury to human umbilical vein, RF/6A, and ECV304 cells induced by Na(2)S(2)O(4).","authors":"Hai-ning Yu,&nbsp;Xiao-Li Ma,&nbsp;Jun-guo Yang,&nbsp;Chang-chun Shi,&nbsp;Sheng-rong Shen,&nbsp;Guo-qing He","doi":"10.1080/10623320701547299","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia is related to the etiology of numerous pathological disease states, such as the formation of tumors or diverse retinopathies. Epigallocatechin-3-gallate (EGCG), a potent polyphenolic antioxidant and antiangiogenic compound found in green tea, has been shown to suppress the growth of blood vessels necessary for the growth of tumors and the induction of retinopathies. However, only a few studies have been carried focusing on the protective effects of EGCG on hypoxia-induced injury of cultured endothelial cells. The present study investigated the effects of EGCG on Na(2)S(2)O(4)-induced hypoxic injury in three types of cultured endothelial cells, primary isolates of normal human umbilical vein endothelial cells (HUVECs), and two transformed endothelial cells lines, RF/6A and ECV304. Our results indicated that Na(2)S(2)O(4) inhibited the growth of HUVE, RF/6A, and ECV304 cells in a dose-dependent manner; EGCG also exerted inhibitory effects on the growth of the three cell types, but the toxicity of EGCG to HUVECs was less than to RF/6A and ECV304 cells. The viability of HUVE, RF/6A, and ECV304 cells treated with EGGC were the lowest at 24, 24, and 36 h, respectively, and the IC(50) of EGCG were 420 +/- 8.0, 125 +/- 7.1, and 75 +/- 5.1 microM, respectively. Furthermore, EGCG, an efficient nontoxic agent, protected all three cell types from Na(2)S(2)O(4)-induced hypoxia injury, providing partial protection from hypoxia-induced injury in normal endothelial cells at 100, 30, and 10 microM for HUVE, RF/6A, and ECV304 cells, respectively.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"14 4-5","pages":"227-31"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320701547299","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320701547299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Hypoxia is related to the etiology of numerous pathological disease states, such as the formation of tumors or diverse retinopathies. Epigallocatechin-3-gallate (EGCG), a potent polyphenolic antioxidant and antiangiogenic compound found in green tea, has been shown to suppress the growth of blood vessels necessary for the growth of tumors and the induction of retinopathies. However, only a few studies have been carried focusing on the protective effects of EGCG on hypoxia-induced injury of cultured endothelial cells. The present study investigated the effects of EGCG on Na(2)S(2)O(4)-induced hypoxic injury in three types of cultured endothelial cells, primary isolates of normal human umbilical vein endothelial cells (HUVECs), and two transformed endothelial cells lines, RF/6A and ECV304. Our results indicated that Na(2)S(2)O(4) inhibited the growth of HUVE, RF/6A, and ECV304 cells in a dose-dependent manner; EGCG also exerted inhibitory effects on the growth of the three cell types, but the toxicity of EGCG to HUVECs was less than to RF/6A and ECV304 cells. The viability of HUVE, RF/6A, and ECV304 cells treated with EGGC were the lowest at 24, 24, and 36 h, respectively, and the IC(50) of EGCG were 420 +/- 8.0, 125 +/- 7.1, and 75 +/- 5.1 microM, respectively. Furthermore, EGCG, an efficient nontoxic agent, protected all three cell types from Na(2)S(2)O(4)-induced hypoxia injury, providing partial protection from hypoxia-induced injury in normal endothelial cells at 100, 30, and 10 microM for HUVE, RF/6A, and ECV304 cells, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表没食子儿茶素-3-没食子酸酯对Na(2)S(2)O诱导的人脐静脉、RF/6A及ECV304细胞缺氧损伤的影响比较(4)。
缺氧与许多病理疾病状态的病因有关,如肿瘤的形成或多种视网膜病变。表没食子儿茶素-3-没食子酸酯(EGCG)是绿茶中发现的一种有效的多酚类抗氧化剂和抗血管生成化合物,已被证明可以抑制肿瘤生长和视网膜病变诱导所必需的血管生长。然而,EGCG对培养的内皮细胞缺氧损伤的保护作用的研究较少。本研究研究了EGCG对Na(2)S(2)O(4)诱导的3种培养内皮细胞、正常人脐静脉内皮细胞(HUVECs)原代分离株和2种转化内皮细胞系RF/6A和ECV304的影响。结果表明,Na(2)S(2)O(4)抑制HUVE、RF/6A和ECV304细胞的生长呈剂量依赖性;EGCG对三种细胞类型的生长均有抑制作用,但EGCG对HUVECs的毒性小于对RF/6A和ECV304细胞的毒性。EGGC对HUVE、RF/6A和ECV304细胞的活性分别在24、24和36 h时最低,EGCG的IC(50)分别为420 +/- 8.0、125 +/- 7.1和75 +/- 5.1 microM。此外,EGCG作为一种有效的无毒剂,可以保护所有三种细胞类型免受Na(2)S(2)O(4)诱导的缺氧损伤,对HUVE、RF/6A和ECV304细胞分别在100、30和10微米下缺氧诱导的正常内皮细胞提供部分保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel constructs as an enabling platform technology: II. The effect of anti-inflammatory drugs on phosphometabolite levels. Interaction of estrogen and tumor necrosis factor alpha in endothelial cell migration and early stage of angiogenesis. Endothelial progenitor cells in patients with severe peripheral arterial disease. Effects of two complex hemodynamic stimulation profiles on hemostatic genes in a vessel-like environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1