Rapid Determination of Volatile Constituents in Safflower by Microwave Distillation and Simultaneous Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry
Yingjia Yu, Bei Yang, Tao Zhou, Haiying Zhang, Luping Shao, Gengli Duan
{"title":"Rapid Determination of Volatile Constituents in Safflower by Microwave Distillation and Simultaneous Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry","authors":"Yingjia Yu, Bei Yang, Tao Zhou, Haiying Zhang, Luping Shao, Gengli Duan","doi":"10.1002/adic.200790091","DOIUrl":null,"url":null,"abstract":"<p>In this paper, microwave distillation and solid-phase microextraction coupled with gas chromatography-mass spectrometry (MD-SPME/GC-MS) was developed for the analysis of essential components in safflower. Using the MD-SPME technique, the isolation, extraction and concentration of volatile compounds in safflower were carried out in only one step. Some parameters affecting the extraction efficiency such as SPME fiber coating, microwave power, irradiation time and the volume of water added were optimized. The optimal experiment parameters obtained were: 65 μm CW/DVB SPME fiber, a microwave power of 400 W, an irradiation time of 3 min and water volume of 1 mL. The proposed method has been compared with conventional steam distillation (SD) for extraction of essential oil compounds in safflower. Using MD-SPME followed by GC-MS, 32 compounds in safflower were separated and identified, which mainly included paeonol, alpha-asarone, beta-asarone, 1-methyl-4-(2-propenyl)-benzene and diethenyl-benzene, whereas only 18 compounds were separated and identified by conventional SD followed by GC-MS. The relative standard deviation (R.S.D.) values of less than 10 % show that the proposed method has good reproducibility. The results show that MD-SPME/GC-MS is a simple, rapid, effective method for the analysis of volatile oil components in safflower.</p>","PeriodicalId":8193,"journal":{"name":"Annali di chimica","volume":"97 10","pages":"1075-1084"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adic.200790091","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di chimica","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adic.200790091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, microwave distillation and solid-phase microextraction coupled with gas chromatography-mass spectrometry (MD-SPME/GC-MS) was developed for the analysis of essential components in safflower. Using the MD-SPME technique, the isolation, extraction and concentration of volatile compounds in safflower were carried out in only one step. Some parameters affecting the extraction efficiency such as SPME fiber coating, microwave power, irradiation time and the volume of water added were optimized. The optimal experiment parameters obtained were: 65 μm CW/DVB SPME fiber, a microwave power of 400 W, an irradiation time of 3 min and water volume of 1 mL. The proposed method has been compared with conventional steam distillation (SD) for extraction of essential oil compounds in safflower. Using MD-SPME followed by GC-MS, 32 compounds in safflower were separated and identified, which mainly included paeonol, alpha-asarone, beta-asarone, 1-methyl-4-(2-propenyl)-benzene and diethenyl-benzene, whereas only 18 compounds were separated and identified by conventional SD followed by GC-MS. The relative standard deviation (R.S.D.) values of less than 10 % show that the proposed method has good reproducibility. The results show that MD-SPME/GC-MS is a simple, rapid, effective method for the analysis of volatile oil components in safflower.