Determination of active ingredients in mutouhui by capillary electrophoresis with electrochemical detection.

Cheng-Huai Geng, Wei-Yu Wang, Miao Lin, Jian-Nong Ye
{"title":"Determination of active ingredients in mutouhui by capillary electrophoresis with electrochemical detection.","authors":"Cheng-Huai Geng,&nbsp;Wei-Yu Wang,&nbsp;Miao Lin,&nbsp;Jian-Nong Ye","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of scopoletin, hyperin, chlorogenic acid, and quercetin in Mutouhui. The effects of several important factors, including running buffer acidity, separation voltage, and working potential, were evaluated to achieve the optimum conditions. The working electrode was a 300-microm carbon disk electrode at a working potential of + 0.95 V (versus saturated calomel electrode). Under the optimum conditions, the analytes can be well separated within 20 min in a 75-cm-long fused-silica capillary. The current response was linear over two orders of magnitude with detection limits (S/N = 3) ranging from 2.70 x 10(-8) g/mL to 1.30 x 10(-7) g/mL for all analytes. This method was used successfully in the analysis of Mutouhui, and the assay results were satisfactory.</p>","PeriodicalId":15060,"journal":{"name":"Journal of capillary electrophoresis and microchip technology","volume":"10 3-4","pages":"63-7"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of capillary electrophoresis and microchip technology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of scopoletin, hyperin, chlorogenic acid, and quercetin in Mutouhui. The effects of several important factors, including running buffer acidity, separation voltage, and working potential, were evaluated to achieve the optimum conditions. The working electrode was a 300-microm carbon disk electrode at a working potential of + 0.95 V (versus saturated calomel electrode). Under the optimum conditions, the analytes can be well separated within 20 min in a 75-cm-long fused-silica capillary. The current response was linear over two orders of magnitude with detection limits (S/N = 3) ranging from 2.70 x 10(-8) g/mL to 1.30 x 10(-7) g/mL for all analytes. This method was used successfully in the analysis of Mutouhui, and the assay results were satisfactory.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毛细管电泳-电化学检测法测定木头惠中有效成分。
采用毛细管区带电泳-电化学检测分离测定木头会中东莨菪碱、金丝桃苷、绿原酸和槲皮素的含量。考察了运行缓冲液酸度、分离电压、工作电位等因素的影响,确定了最佳工艺条件。工作电极为300微米的碳盘电极,工作电位为+ 0.95 V(相对于饱和甘汞电极)。在最佳条件下,在75 cm长的熔融石英毛细管中,分析物可在20 min内得到很好的分离。当前响应在两个数量级以上呈线性,检测限(S/N = 3)范围为2.70 × 10(-8) g/mL至1.30 × 10(-7) g/mL。该方法可用于木头慧的分析,分析结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device. Analysis of sphingosine 1-phosphate by capillary electrophoresis coupled to laser-induced fluorescence detection: use of a transparent fused-silica capillary. Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature. Comparison of a thermo-associating matrix and a liquid polymer. Marja-Liisa Riekkola.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1