Alexandra Theresia Fuchs, Andreas Kuehnl, Jaroslav Pelisek, Pierre Henri Rolland, Choukri Mekkaoui, Heinrich Netz, Sigrid Nikol
{"title":"Inhibition of restenosis formation without compromising reendothelialization as a potential solution to thrombosis following angioplasty?","authors":"Alexandra Theresia Fuchs, Andreas Kuehnl, Jaroslav Pelisek, Pierre Henri Rolland, Choukri Mekkaoui, Heinrich Netz, Sigrid Nikol","doi":"10.1080/10623320802092484","DOIUrl":null,"url":null,"abstract":"<p><p>Stent thrombosis remains an important problem after the implantation of different stent types. A potential solution to this problem may be vasoactive agents with dual effects on different cell types like C-type natriuretic peptide (CNP). Therefore, in vitro and in vivo effects of CNP were investigated in a porcine restenotic model. Gene transfer of CNP in cultures of porcine vascular cells revealed up to 30% reduction of growth of smooth muscle cells (p<.05), but no suppression of endothelial growth using CNP. Applied in vivo, angiography revealed a trend of reduced restenosis formation in balloon-injured porcine arteries treated with CNP gene or beta-galactosidase (beta-Gal) control gene after three months (2.59 +/- 2.04-fold reduction, p = n.s.). Histologically, morphometry revealed significantly reduced neointima formation after treatment with CNP plasmid (7.26 +/- 1.44-fold reduction, p < .05). Evans blue staining demonstrated complete endothelial repair already 3 weeks after intervention using CNP. Transfer of CNP gene resulted in a significant inhibition of neointima formation without compromising endothelial repair. Therefore, use of the CNP gene may offer a solution to suppress restenosis formation while preventing subacute or late thrombosis.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"15 1","pages":"85-92"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320802092484","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320802092484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Stent thrombosis remains an important problem after the implantation of different stent types. A potential solution to this problem may be vasoactive agents with dual effects on different cell types like C-type natriuretic peptide (CNP). Therefore, in vitro and in vivo effects of CNP were investigated in a porcine restenotic model. Gene transfer of CNP in cultures of porcine vascular cells revealed up to 30% reduction of growth of smooth muscle cells (p<.05), but no suppression of endothelial growth using CNP. Applied in vivo, angiography revealed a trend of reduced restenosis formation in balloon-injured porcine arteries treated with CNP gene or beta-galactosidase (beta-Gal) control gene after three months (2.59 +/- 2.04-fold reduction, p = n.s.). Histologically, morphometry revealed significantly reduced neointima formation after treatment with CNP plasmid (7.26 +/- 1.44-fold reduction, p < .05). Evans blue staining demonstrated complete endothelial repair already 3 weeks after intervention using CNP. Transfer of CNP gene resulted in a significant inhibition of neointima formation without compromising endothelial repair. Therefore, use of the CNP gene may offer a solution to suppress restenosis formation while preventing subacute or late thrombosis.