NIR light-responsive nanocarriers for controlled release

Yiyuan Tang, Guojie Wang
{"title":"NIR light-responsive nanocarriers for controlled release","authors":"Yiyuan Tang,&nbsp;Guojie Wang","doi":"10.1016/j.jphotochemrev.2021.100420","DOIUrl":null,"url":null,"abstract":"<div><p>The near-infrared (NIR) light in the wavelength range of 780−1700 nm is regarded as transparency therapeutic window for light-activated delivery system in vivo due to the deep tissue penetration and minimum cellular damage of it. Numerous reports about NIR light-sensitive nanocarriers have emerged in the past few years. Here, strategies for the design and fabrication of nanocarriers for NIR light-controlled release are reviewed, which are based on three triggering mechanisms: (1) photoreactions of chromophores, including NIR light-induced photoreactions and upconversion nanoparticles (UCNPs)-mediated photochemical reactions; (2) photothermal effect, triggered by inorganic or organic photothermal conversion agents (PCAs) with the excitation of NIR light; (3) photo-oxidation, induced by reactive oxygen species (ROS) generated by photosensitizers under NIR light radiation. Finally, the challenges and perspectives of NIR light-sensitive nanocarriers for future development are given.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"47 ","pages":"Article 100420"},"PeriodicalIF":12.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphotochemrev.2021.100420","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556721000198","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 28

Abstract

The near-infrared (NIR) light in the wavelength range of 780−1700 nm is regarded as transparency therapeutic window for light-activated delivery system in vivo due to the deep tissue penetration and minimum cellular damage of it. Numerous reports about NIR light-sensitive nanocarriers have emerged in the past few years. Here, strategies for the design and fabrication of nanocarriers for NIR light-controlled release are reviewed, which are based on three triggering mechanisms: (1) photoreactions of chromophores, including NIR light-induced photoreactions and upconversion nanoparticles (UCNPs)-mediated photochemical reactions; (2) photothermal effect, triggered by inorganic or organic photothermal conversion agents (PCAs) with the excitation of NIR light; (3) photo-oxidation, induced by reactive oxygen species (ROS) generated by photosensitizers under NIR light radiation. Finally, the challenges and perspectives of NIR light-sensitive nanocarriers for future development are given.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可控释放的近红外光响应纳米载体
780 ~ 1700 nm波长范围内的近红外(NIR)由于其穿透组织深层和细胞损伤最小,被认为是光激活给药系统在体内的透明治疗窗口。在过去的几年里,关于近红外光敏纳米载体的报道层出不穷。本文综述了基于三种触发机制的近红外光控释纳米载体的设计和制造策略:(1)发色团的光反应,包括近红外光诱导的光反应和上转化纳米颗粒(UCNPs)介导的光化学反应;(2)由无机或有机光热转换剂(PCAs)在近红外光激发下引发的光热效应;(3)近红外光辐射下光敏剂产生活性氧(ROS)诱导的光氧化。最后,对近红外光敏纳米载体的未来发展提出了挑战和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs Boron doped nanomaterials for photocatalysis Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1