{"title":"AKT/eNOS signaling module functions as a potential feedback loop in the growth hormone signaling pathway.","authors":"Cong-Jun Li, Theodore H Elsasser, Stanislaw Kahl","doi":"10.1186/1750-2187-4-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear.</p><p><strong>Results: </strong>Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors.</p><p><strong>Conclusion: </strong>The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-4-1","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-4-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18
Abstract
Background: While evidence suggested that the activity states of Protein kinase B (AKT/PKB) and endothelial nitric oxide synthase (eNOS) play an important role in the progression of the Growth Hormone (GH) signal cascade, the implication of the activation of AKT/PKB and eNOS in terms of their function in the signaling pathway was not clear.
Results: Using a specific AKT/PKB inhibitor and a functional proteomic approach, we were able to detect the activities of multiple signal transduction pathway elements, the downstream targets of the AKT/PKB pathway and the modification of those responses by treatment with GH. Inhibiting the AKT/PKB activity reduced or eliminated the activation (phosphorylation) of eNOS. We demonstrated that the progression of the GH signal cascade is influenced by the activity status of AKT and eNOS, wherein the suppression of AKT activity appears to augment the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2) and to antagonize the deactivation (phosphorylation) of cyclin-dependent kinase 2 (CDC2/Cdk1) induced by GH. Phosphorylation of GSK3a/b (glycogen synthase kinase 3), the downstream target of AKT/PKB, was inhibited by the AKT/PKB inhibitor. GH did not increase phosphorylation of ribosomal S6 kinase 1 (RSK1) in normal cells but increases phosphorylation of RSK1 in cells pre-treated with the AKT and eNOS inhibitors.
Conclusion: The MAP kinase and CDC2 kinase-dependent intracellular mechanisms are involved in or are the targets of the GH's action processes, and these activities are probably directly or indirectly modulated by AKT/PKB pathways. We propose that the AKT/PKB-eNOS module likely functions as a negative feedback mediator of GH actions.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.