Burning structures and propagation mechanisms of nanothermites

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2023-01-01 DOI:10.1016/j.proci.2022.07.113
Suyong Kim , Averitt A. Johns , John Z. Wen , Sili Deng
{"title":"Burning structures and propagation mechanisms of nanothermites","authors":"Suyong Kim ,&nbsp;Averitt A. Johns ,&nbsp;John Z. Wen ,&nbsp;Sili Deng","doi":"10.1016/j.proci.2022.07.113","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nanothermites demonstrate attractive combustion characteristics such as tunable reactivity and high energy density. There is however a lack of fundamental understanding on their burning structures and reaction mechanisms due to the multi-scale complexity associated with the material and reaction heterogeneities. This gap in turn hinders the optimization of nanothermite design with desirable microstructures and controllable burning properties. In this work, a high-speed microscopy imaging system was used to reveal the burning structure of Al/CuO nanothermites and to investigate the propagation mechanism of its flame front at micron and sub-millimeter scales which have not been studied. An Al/CuO nanothermite film was fabricated as a model structure. First, the previously proposed reactive sintering was confirmed as a micron-scale burning characteristic. Then, at the sub-millimeter scale, it was demonstrated that the non-uniform burning propagation of nanothermite films is featured with distinguishable roles of the active burning sites and the pre-ignition sites. The active burning sites are clusters of reactive sintering particles and the pre-ignition sites appear in the preheating regions where Al and CuO particles have not yet participated in the reaction due to insufficient ignition energy. These pre-ignition sites form randomly and are subsequently ignited by heat transferred from the adjacent active burning sites, resulting in an active burning propagation tangentially along the propagation front. At the same time, as the thermite reaction of </span>nanoparticles in the unburnt region is initiated, the propagation front advances in the normal direction. This experimental work reveals that the burning propagation mechanism of nanothermite films is governed by active burning propagation in both tangential and normal directions of the propagation front. Although the rates of these two modes are on the same order of magnitude, the tangential propagation of active burning is slightly faster, implying that pre-ignition sites are readily ignited with lower ignition energy.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 3","pages":"Pages 3593-3604"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922001493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Nanothermites demonstrate attractive combustion characteristics such as tunable reactivity and high energy density. There is however a lack of fundamental understanding on their burning structures and reaction mechanisms due to the multi-scale complexity associated with the material and reaction heterogeneities. This gap in turn hinders the optimization of nanothermite design with desirable microstructures and controllable burning properties. In this work, a high-speed microscopy imaging system was used to reveal the burning structure of Al/CuO nanothermites and to investigate the propagation mechanism of its flame front at micron and sub-millimeter scales which have not been studied. An Al/CuO nanothermite film was fabricated as a model structure. First, the previously proposed reactive sintering was confirmed as a micron-scale burning characteristic. Then, at the sub-millimeter scale, it was demonstrated that the non-uniform burning propagation of nanothermite films is featured with distinguishable roles of the active burning sites and the pre-ignition sites. The active burning sites are clusters of reactive sintering particles and the pre-ignition sites appear in the preheating regions where Al and CuO particles have not yet participated in the reaction due to insufficient ignition energy. These pre-ignition sites form randomly and are subsequently ignited by heat transferred from the adjacent active burning sites, resulting in an active burning propagation tangentially along the propagation front. At the same time, as the thermite reaction of nanoparticles in the unburnt region is initiated, the propagation front advances in the normal direction. This experimental work reveals that the burning propagation mechanism of nanothermite films is governed by active burning propagation in both tangential and normal directions of the propagation front. Although the rates of these two modes are on the same order of magnitude, the tangential propagation of active burning is slightly faster, implying that pre-ignition sites are readily ignited with lower ignition energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米热螨的燃烧结构及传播机理
纳米热螨具有良好的燃烧特性,如可调节的反应性和高能量密度。然而,由于材料的多尺度复杂性和反应的非均质性,对其燃烧结构和反应机理缺乏基本的认识。这一差距反过来又阻碍了纳米热剂设计的优化,使其具有理想的微观结构和可控的燃烧性能。本文利用高速显微成像系统揭示了Al/CuO纳米热虫的燃烧结构,并对其火焰前缘在微米和亚毫米尺度上的传播机理进行了研究。制备了Al/CuO纳米热膜作为模型结构。首先,证实了先前提出的反应烧结具有微米尺度的燃烧特性。然后,在亚毫米尺度上,证明了纳米热膜的不均匀燃烧传播具有活性燃烧位点和预点燃位点的区别作用。活性燃烧位点为反应烧结颗粒簇,预燃位点出现在Al和CuO颗粒因点火能量不足而尚未参与反应的预热区。这些预燃点随机形成,随后被邻近主动燃烧点传递的热量点燃,导致沿传播锋切向的主动燃烧传播。同时,随着未燃区铝热反应的启动,纳米粒子的传播锋向法向推进。实验结果表明,纳米热热膜的燃烧传播机制受传播前沿切向和法向的主动燃烧传播支配。虽然这两种模式的速率在同一个数量级上,但主动燃烧的切向传播速度略快,这意味着预点火部位容易以较低的点火能量被点燃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1