Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection.

Neuron glia biology Pub Date : 2008-05-01 Epub Date: 2009-06-05 DOI:10.1017/S1740925X0900009X
Wiebke Möbius, Julia Patzig, Klaus-Armin Nave, Hauke B Werner
{"title":"Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection.","authors":"Wiebke Möbius,&nbsp;Julia Patzig,&nbsp;Klaus-Armin Nave,&nbsp;Hauke B Werner","doi":"10.1017/S1740925X0900009X","DOIUrl":null,"url":null,"abstract":"<p><p>The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X0900009X","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X0900009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/6/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂蛋白的系统发育:分化、限制和髓鞘形成和神经保护新功能的进化。
在从鱼类到四足动物的进化过程中,中枢神经系统(CNS)中髓磷脂的蛋白质组成发生了变化,脂质相关的跨膜四足蛋白(蛋白脂蛋白,PLP)取代了免疫球蛋白超家族(P0)中的粘附蛋白,成为最丰富的成分。在此,我们回顾了蛋白脂进化的主要步骤。从软骨鱼到哺乳动物的脊椎动物中都存在三种旁系蛋白脂(PLP/DM20/DMalpha, M6B/DMgamma和神经元糖蛋白M6A/DMbeta),其中一种(M6/CG7540)可以在包括浮游桡足动物Calanus finmarchicus在内的无脊椎动物双边动物中找到,具有功能性髓磷脂当量。在鱼类中,DMalpha和DMgamma在少突胶质细胞中共表达,但不是髓磷脂的主要成分。PLP出现在四足动物的根部,通过在进化较老的DMalpha/DM20中获得一个扩大的细胞质环。小鼠的转基因实验表明,该环增强了PLP与髓磷脂的结合。PLP作为主要髓磷脂蛋白的进化募集为少突胶质细胞提供了长期支持轴突完整性的能力。我们认为,从P0到PLP的分子转移也与径向部分的粘附力浓度有关,并且膜粘附和动力学之间的新平衡有利于中枢神经系统的髓鞘形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron glia biology
Neuron glia biology 医学-神经科学
自引率
0.00%
发文量
0
期刊最新文献
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain. The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG-spinal cord network of axotomised Thy 1.2 eGFP mice. Exposure to environmental enrichment prior to a cerebral cortex stab wound attenuates the postlesional astroglia response in rats. Evidence of microglial activation in autism and its possible role in brain underconnectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1