The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD.

Neuron glia biology Pub Date : 2008-11-01 Epub Date: 2009-06-10 DOI:10.1017/S1740925X09990020
Sonia Siddiqui, Andrea Horvat-Bröcker, Andreas Faissner
{"title":"The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD.","authors":"Sonia Siddiqui,&nbsp;Andrea Horvat-Bröcker,&nbsp;Andreas Faissner","doi":"10.1017/S1740925X09990020","DOIUrl":null,"url":null,"abstract":"<p><p>Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which significantly increased fiber length. When combined with LN, Tnc induced axon fasciculation that reduced the apparent number of outgrowing fibers. In order to circumscribe the stimulatory region, Tnc-derived fibronectin type III (TNfn) domains fused to the human Ig-Fc-fragment TNfnD6-Fc, TNfnBD-Fc, TNFnA1A2-Fc and TNfnA1D-Fc were studied. The fusion proteins TNfnBD-Fc and to a lesser degree TNfnA1D-Fc were stimulatory when compared with the Ig-Fc-fragment protein without insert. In contrast, the combination TNfnA1A2-Fc reduced fiber outgrowth beneath the values obtained for the Ig-Fc domain, indicating potential inhibitory properties. The monoclonal J1/tn2 antibody (clone 578) that is specific for domain TNfnD blocked the stimulatory properties of the TNfn-Fc fusions. When postnatal day 7 retinal ganglion cells were used rather that explants, Tnc and Tnc-derived proteins proved permissive for neurite outgrowth. The present study highlights a strong retinal axon growth-promoting activity of the Tnc domain TNfnD, which is modulated by neighboring domains.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X09990020","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X09990020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/6/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which significantly increased fiber length. When combined with LN, Tnc induced axon fasciculation that reduced the apparent number of outgrowing fibers. In order to circumscribe the stimulatory region, Tnc-derived fibronectin type III (TNfn) domains fused to the human Ig-Fc-fragment TNfnD6-Fc, TNfnBD-Fc, TNFnA1A2-Fc and TNfnA1D-Fc were studied. The fusion proteins TNfnBD-Fc and to a lesser degree TNfnA1D-Fc were stimulatory when compared with the Ig-Fc-fragment protein without insert. In contrast, the combination TNfnA1A2-Fc reduced fiber outgrowth beneath the values obtained for the Ig-Fc domain, indicating potential inhibitory properties. The monoclonal J1/tn2 antibody (clone 578) that is specific for domain TNfnD blocked the stimulatory properties of the TNfn-Fc fusions. When postnatal day 7 retinal ganglion cells were used rather that explants, Tnc and Tnc-derived proteins proved permissive for neurite outgrowth. The present study highlights a strong retinal axon growth-promoting activity of the Tnc domain TNfnD, which is modulated by neighboring domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经胶质来源的细胞外基质糖蛋白tenascin-C通过选择性剪接的纤维连接蛋白III型结构域TNfnD促进胚胎和出生后视网膜轴突的生长。
Tenascin-C (Tnc)是一种星形细胞多功能细胞外基质(ECM)糖蛋白,可能促进或抑制神经突的生长。为了研究其在视网膜发育中的可能功能,我们将胚胎第18天(E18)大鼠视网膜外植体培养在由聚d-赖氨酸(PDL)组成的培养基质上,或在PDL上涂有Tnc或层粘连蛋白(LN)-1的培养基质上,这些培养基质显著增加了纤维长度。当与LN联合使用时,Tnc诱导轴突束化,减少生长纤维的表观数量。为了划定刺激区域,研究了tnc衍生的纤维连接蛋白III型(TNfn)结构域融合到人ig - fc片段TNfnD6-Fc、TNfnBD-Fc、TNFnA1A2-Fc和TNfnA1D-Fc。与未插入的ig - fc片段蛋白相比,融合蛋白TNfnBD-Fc和较小程度的TNfnA1D-Fc具有刺激作用。相比之下,TNfnA1A2-Fc组合将纤维生长减少到低于Ig-Fc结构域的值,表明潜在的抑制特性。单克隆J1/tn2抗体(克隆578)对TNfnD结构域具有特异性,可阻断TNfn-Fc融合体的刺激特性。当使用出生后第7天的视网膜神经节细胞而不是外植体时,Tnc和Tnc衍生的蛋白质被证明允许神经突的生长。本研究强调了Tnc结构域TNfnD的强视网膜轴突生长促进活性,这是由邻近结构域调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron glia biology
Neuron glia biology 医学-神经科学
自引率
0.00%
发文量
0
期刊最新文献
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain. The effects of L-NAME on neuronal NOS and SOD1 expression in the DRG-spinal cord network of axotomised Thy 1.2 eGFP mice. Exposure to environmental enrichment prior to a cerebral cortex stab wound attenuates the postlesional astroglia response in rats. Evidence of microglial activation in autism and its possible role in brain underconnectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1