{"title":"Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: MAu(n)(-) (n=8-11; M=Ag,Cu).","authors":"Lei-Ming Wang, Rhitankar Pal, Wei Huang, Xiao Cheng Zeng, Lai-Sheng Wang","doi":"10.1063/1.3356046","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of isoelectronic substitution on the electronic and structural properties of gold clusters are investigated in the critical size range of the two-dimensional (2D)-three-dimensional (3D) structural transition (MAu(n)(-), n=8-11; M=Ag,Cu) using photoelectron spectroscopy and density functional calculations. Photoelectron spectra of MAu(n)(-) are found to be similar to those of the bare gold clusters Au(n+1)(-), indicating that substitution of a Au atom by a Ag or Cu atom does not significantly alter the geometric and electronic structures of the clusters. The only exception occurs at n=10, where very different spectra are observed for MAu(10)(-) from Au(11)(-), suggesting a major structural change in the doped clusters. Our calculations confirm that MAu(8)(-) possesses the same structure as Au(9)(-) with Ag or Cu simply replacing one Au atom in its C(2v) planar global minimum structure. Two close-lying substitution isomers are observed, one involves the replacement of a center Au atom and another one involves an edge site. For Au(10)(-) we identify three coexisting low-lying planar isomers along with the D(3h) global minimum. The coexistence of so many low-lying isomers for the small-sized gold cluster Au(10)(-) is quite unprecedented. Similar planar structures and isomeric forms are observed for the doped MAu(9)(-) clusters. Although the global minimum of Au(11)(-) is planar, our calculations suggest that only simulated spectra of 3D structures agree with the observed spectra for MAu(10)(-). For MAu(11)(-), only a 3D isomer is observed, in contrast to Au(12)(-) which is the critical size for the 2D-3D structural transition with both the 2D and 3D isomers coexisting. The current work shows that structural perturbations due to even isoelectronic substitution of a single Au atom shift the 2D to 3D structural transition of gold clusters to a smaller size.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"132 11","pages":"114306"},"PeriodicalIF":3.1000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.3356046","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1.3356046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 13
Abstract
The effects of isoelectronic substitution on the electronic and structural properties of gold clusters are investigated in the critical size range of the two-dimensional (2D)-three-dimensional (3D) structural transition (MAu(n)(-), n=8-11; M=Ag,Cu) using photoelectron spectroscopy and density functional calculations. Photoelectron spectra of MAu(n)(-) are found to be similar to those of the bare gold clusters Au(n+1)(-), indicating that substitution of a Au atom by a Ag or Cu atom does not significantly alter the geometric and electronic structures of the clusters. The only exception occurs at n=10, where very different spectra are observed for MAu(10)(-) from Au(11)(-), suggesting a major structural change in the doped clusters. Our calculations confirm that MAu(8)(-) possesses the same structure as Au(9)(-) with Ag or Cu simply replacing one Au atom in its C(2v) planar global minimum structure. Two close-lying substitution isomers are observed, one involves the replacement of a center Au atom and another one involves an edge site. For Au(10)(-) we identify three coexisting low-lying planar isomers along with the D(3h) global minimum. The coexistence of so many low-lying isomers for the small-sized gold cluster Au(10)(-) is quite unprecedented. Similar planar structures and isomeric forms are observed for the doped MAu(9)(-) clusters. Although the global minimum of Au(11)(-) is planar, our calculations suggest that only simulated spectra of 3D structures agree with the observed spectra for MAu(10)(-). For MAu(11)(-), only a 3D isomer is observed, in contrast to Au(12)(-) which is the critical size for the 2D-3D structural transition with both the 2D and 3D isomers coexisting. The current work shows that structural perturbations due to even isoelectronic substitution of a single Au atom shift the 2D to 3D structural transition of gold clusters to a smaller size.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.