{"title":"Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli","authors":"Sonal Fande , Khairunnisa Amreen , D. Sriram , Sanket Goel","doi":"10.1016/j.aca.2022.340591","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial contamination and infection is a major health concern today leading to the significance of its detection. Being lab-based bacterial culturing processes, the present approaches are time consuming and require trained skillset. An economical, and miniaturized lab-on-chip device, capable of simultaneous detection of bacterial growth, could be a benchmarking tool for monitoring the bacterial contamination. Herein, the microfluidic-based electrochemical device for a fast, susceptible, detection of <em>Escherichia coli</em> was developed. The device could aid incubator free bacteria culturing in the ambient atmosphere and simultaneously monitor and detect the growth electrochemically. A three-electrode system, integrated with a reservoir and a portable thermostat temperature controller was fabricated and assembled. To achieve this, three-electrodes were embedded on the microfluidic device by screen-printing carbon paste, and the working electrode was enhanced by graphitized mesoporous carbon. Cyclic voltammetry response was noted as the function of concentration and growth of <em>Escherichia Coli</em> in the reservoir. The device gave a linear bacterial concentration range of 0.336 × 10<sup>12</sup> to 40 × 10<sup>12</sup> CFU mL<sup>−1</sup>, detection limit of 0.35 CFU mL<sup>−1</sup> and the quantification limit of 1.05 CFU mL<sup>−1</sup> which was less than the maximum allowable limit. The developed platform was further used to detect and continuously monitor the bacterial growth in the real sample (mango juice) for a period of 36 h. Finally, the interference from other common bacteria on the electrode selectivity was also investigated. Such approach in being further modified for specific sensing of bacteria in patients suffering from different diseases such as corneal ulcers, Diarrhea, tuberculosis, leprosy, and syphilis.</p></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1237 ","pages":"Article 340591"},"PeriodicalIF":5.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000326702201162X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Bacterial contamination and infection is a major health concern today leading to the significance of its detection. Being lab-based bacterial culturing processes, the present approaches are time consuming and require trained skillset. An economical, and miniaturized lab-on-chip device, capable of simultaneous detection of bacterial growth, could be a benchmarking tool for monitoring the bacterial contamination. Herein, the microfluidic-based electrochemical device for a fast, susceptible, detection of Escherichia coli was developed. The device could aid incubator free bacteria culturing in the ambient atmosphere and simultaneously monitor and detect the growth electrochemically. A three-electrode system, integrated with a reservoir and a portable thermostat temperature controller was fabricated and assembled. To achieve this, three-electrodes were embedded on the microfluidic device by screen-printing carbon paste, and the working electrode was enhanced by graphitized mesoporous carbon. Cyclic voltammetry response was noted as the function of concentration and growth of Escherichia Coli in the reservoir. The device gave a linear bacterial concentration range of 0.336 × 1012 to 40 × 1012 CFU mL−1, detection limit of 0.35 CFU mL−1 and the quantification limit of 1.05 CFU mL−1 which was less than the maximum allowable limit. The developed platform was further used to detect and continuously monitor the bacterial growth in the real sample (mango juice) for a period of 36 h. Finally, the interference from other common bacteria on the electrode selectivity was also investigated. Such approach in being further modified for specific sensing of bacteria in patients suffering from different diseases such as corneal ulcers, Diarrhea, tuberculosis, leprosy, and syphilis.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.