CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS.

A M Smalter, J Huan, G H Lushington
{"title":"CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS.","authors":"A M Smalter, J Huan, G H Lushington","doi":"10.1901/jaba.2008.6-39","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we propose new methods of chemical structure classification based on the integration of graph database mining from data mining and graph kernel functions from machine learning. In our method, we first identify a set of general graph patterns in chemical structure data. These patterns are then used to augment a graph kernel function that calculates the pairwise similarity between molecules. The obtained similarity matrix is used as input to classify chemical compounds via a kernel machines such as the support vector machine (SVM). Our results indicate that the use of a pattern-based approach to graph similarity yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art approaches. In addition, the identification of highly discriminative patterns for activity classification provides evidence that our methods can make generalizations about a compound's function given its chemical structure. While we evaluated our methods on molecular structures, these methods are designed to operate on general graph data and hence could easily be applied to other domains in bioinformatics.</p>","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"6 ","pages":"39-48"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864492/pdf/nihms118197.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1901/jaba.2008.6-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose new methods of chemical structure classification based on the integration of graph database mining from data mining and graph kernel functions from machine learning. In our method, we first identify a set of general graph patterns in chemical structure data. These patterns are then used to augment a graph kernel function that calculates the pairwise similarity between molecules. The obtained similarity matrix is used as input to classify chemical compounds via a kernel machines such as the support vector machine (SVM). Our results indicate that the use of a pattern-based approach to graph similarity yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art approaches. In addition, the identification of highly discriminative patterns for activity classification provides evidence that our methods can make generalizations about a compound's function given its chemical structure. While we evaluated our methods on molecular structures, these methods are designed to operate on general graph data and hence could easily be applied to other domains in bioinformatics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自动挖掘的结构模式进行化合物分类。
本文基于数据挖掘中的图数据库挖掘和机器学习中的图核函数的整合,提出了化学结构分类的新方法。在我们的方法中,我们首先从化学结构数据中识别出一组通用图模式。然后利用这些模式来增强计算分子间成对相似性的图核函数。得到的相似性矩阵作为输入,通过支持向量机(SVM)等核机器对化合物进行分类。我们的研究结果表明,使用基于模式的图形相似性方法所产生的性能曲线可与现有的最先进方法相媲美,有时甚至超过它们。此外,对活性分类的高区分度模式的识别证明,我们的方法可以根据化合物的化学结构对其功能进行归纳。虽然我们是在分子结构上对我们的方法进行评估的,但这些方法是为在一般图数据上运行而设计的,因此很容易应用于生物信息学的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1