Modeling and prediction of children's growth data via functional principal component analysis.

Hu Yu, He Xuming, Tao Jian, Shi Ning-Zhong
{"title":"Modeling and prediction of children's growth data via functional principal component analysis.","authors":"Hu Yu,&nbsp;He Xuming,&nbsp;Tao Jian,&nbsp;Shi Ning-Zhong","doi":"10.1007/s11425-009-0088-5","DOIUrl":null,"url":null,"abstract":"<p><p>We use the functional principal component analysis (FPCA) to model and predict the weight growth in children. In particular, we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts, and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA. Our work supplements the conditional growth charts developed by Wei and He (2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past.</p>","PeriodicalId":51275,"journal":{"name":"Science in China. Series A, Mathematics, Physics, Astronomy","volume":"52 6","pages":"1342-1350"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11425-009-0088-5","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China. Series A, Mathematics, Physics, Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11425-009-0088-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We use the functional principal component analysis (FPCA) to model and predict the weight growth in children. In particular, we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts, and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA. Our work supplements the conditional growth charts developed by Wei and He (2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于功能主成分分析的儿童生长数据建模与预测。
我们使用功能主成分分析(FPCA)来建模和预测儿童的体重增长。特别是,我们研究了该方法如何帮助识别相对于正常儿童的体重不足儿童的生长模式,以及在基于FPCA的预测模型中,是否常用的向正常的转变发挥了任何建设性的作用。我们的工作通过构建基于个人过去的少量主成分得分的预测增长模型,补充了Wei和He(2006)开发的条件增长图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on Optimal weights and variable selections for multivariate survival data. Modeling and prediction of children's growth data via functional principal component analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1