A Validated Stability-indicating Reverse Phase HPLC Assay Method for the Determination of Memantine Hydrochloride Drug Substance with UV-Detection Using Precolumn Derivatization Technique.
Bhavil Narola, A S Singh, P Rita Santhakumar, T G Chandrashekhar
{"title":"A Validated Stability-indicating Reverse Phase HPLC Assay Method for the Determination of Memantine Hydrochloride Drug Substance with UV-Detection Using Precolumn Derivatization Technique.","authors":"Bhavil Narola, A S Singh, P Rita Santhakumar, T G Chandrashekhar","doi":"10.4137/aci.s3936","DOIUrl":null,"url":null,"abstract":"<p><p>This present paper deals with the development and validation of a stability indicating high performance liquid chromatographic method for the quantitative determination of Memantine hydrochloride. Memantine hydrochloride was derivatized with 0.015 M 9-fluorenylmethyl chloroformate (FMOC) and 0.5 M borate buffer solution by keeping it at room temperature for about 20 minutes and the chromatographic separation achieved by injecting 10 muL of the derivatized mixture into a Waters HPLC system with photodiode array detector using a kromasil C18 column (150 x 4.6 mm), 5 mu. The mobile phase consisting of 80% acetonitrile and 20% phosphate buffer solution and a flow rate of 2 milliliter/minute. The Memantine was eluted at approximately 7.5 minutes. The volume of FMOC used in derivatization, concentration of FMOC and derivatization time was optimized and used. Forced degradation studies were performed on bulk sample of Memantine hydrochloride using acid (5.0 Normal (N) hydrochloric acid), base (1.0 N sodium hydroxide), oxidation (30% hydrogen peroxide), thermal (105 degrees C), photolytic and humidity conditions. The developed LC method was validated with respect to specificity, precision (% RSD about 0.70%), linearity (linearity of range about 70-130 mug/mL), ruggedness (Overall % RSD about 0.35%), stability in analytical solution (Cumulative % RSD about 0.11% after 1450 min.) and robustness.</p>","PeriodicalId":7781,"journal":{"name":"Analytical Chemistry Insights","volume":"5 ","pages":"37-45"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/aci.s3936","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/aci.s3936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
This present paper deals with the development and validation of a stability indicating high performance liquid chromatographic method for the quantitative determination of Memantine hydrochloride. Memantine hydrochloride was derivatized with 0.015 M 9-fluorenylmethyl chloroformate (FMOC) and 0.5 M borate buffer solution by keeping it at room temperature for about 20 minutes and the chromatographic separation achieved by injecting 10 muL of the derivatized mixture into a Waters HPLC system with photodiode array detector using a kromasil C18 column (150 x 4.6 mm), 5 mu. The mobile phase consisting of 80% acetonitrile and 20% phosphate buffer solution and a flow rate of 2 milliliter/minute. The Memantine was eluted at approximately 7.5 minutes. The volume of FMOC used in derivatization, concentration of FMOC and derivatization time was optimized and used. Forced degradation studies were performed on bulk sample of Memantine hydrochloride using acid (5.0 Normal (N) hydrochloric acid), base (1.0 N sodium hydroxide), oxidation (30% hydrogen peroxide), thermal (105 degrees C), photolytic and humidity conditions. The developed LC method was validated with respect to specificity, precision (% RSD about 0.70%), linearity (linearity of range about 70-130 mug/mL), ruggedness (Overall % RSD about 0.35%), stability in analytical solution (Cumulative % RSD about 0.11% after 1450 min.) and robustness.