In Vitro Studies of the Antimicrobial and Free-Radical Scavenging Potentials of Silver Nanoparticles Biosynthesized From the Extract of Desmostachya bipinnata.
Sitaramanjaneya Reddy Guntur, Ns Sampath Kumar, Manasa M Hegde, Vijaya R Dirisala
{"title":"In Vitro Studies of the Antimicrobial and Free-Radical Scavenging Potentials of Silver Nanoparticles Biosynthesized From the Extract of <i>Desmostachya bipinnata</i>.","authors":"Sitaramanjaneya Reddy Guntur, Ns Sampath Kumar, Manasa M Hegde, Vijaya R Dirisala","doi":"10.1177/1177390118782877","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) from the leaf extract of <i>Desmostachya bipinnata</i> (Dharba), a medicinally important herb <i>which</i> is widely used across India. Synthesized AgNPs were analyzed by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDAX). The results have confirmed that green synthesis of AgNPs leads to the fabrication of sphere-shaped particles with a diameter of 53 nm. Furthermore, these AgNPs were subjected to antioxidant and antimicrobial studies against gram-negative and gram-positive bacteria, where AgNPs at a concentration of 20 mg/mL showed highest zone of inhibition. Synthesized AgNPs were evaluated for their antioxidant activity by 1, 1-diphenyl-2-picryl hydrazyl radical (DPPH), H<sub>2</sub>O<sub>2</sub>, and superoxide inhibiting assays; increasing concentration has showed increase in scavenging ability. Cell toxicity was assessed on HepG2 cell lines, and synthesized nanoparticles at a concentration of 128 μg/mL produced significant reduction in viability of Hep cells (<i>P</i> < .05). The availability of Dharba throughout the year and the eco-friendly approach in the synthesis of AgNPs coupled with bioactivity has demonstrated its potential as a novel biomaterial which can be used for various biomedical applications.</p>","PeriodicalId":7781,"journal":{"name":"Analytical Chemistry Insights","volume":"13 ","pages":"1177390118782877"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1177390118782877","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1177390118782877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) from the leaf extract of Desmostachya bipinnata (Dharba), a medicinally important herb which is widely used across India. Synthesized AgNPs were analyzed by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDAX). The results have confirmed that green synthesis of AgNPs leads to the fabrication of sphere-shaped particles with a diameter of 53 nm. Furthermore, these AgNPs were subjected to antioxidant and antimicrobial studies against gram-negative and gram-positive bacteria, where AgNPs at a concentration of 20 mg/mL showed highest zone of inhibition. Synthesized AgNPs were evaluated for their antioxidant activity by 1, 1-diphenyl-2-picryl hydrazyl radical (DPPH), H2O2, and superoxide inhibiting assays; increasing concentration has showed increase in scavenging ability. Cell toxicity was assessed on HepG2 cell lines, and synthesized nanoparticles at a concentration of 128 μg/mL produced significant reduction in viability of Hep cells (P < .05). The availability of Dharba throughout the year and the eco-friendly approach in the synthesis of AgNPs coupled with bioactivity has demonstrated its potential as a novel biomaterial which can be used for various biomedical applications.