F Fixe, H M Branz, N Louro, V Chu, D M F Prazeres, J P Conde
{"title":"Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips.","authors":"F Fixe, H M Branz, N Louro, V Chu, D M F Prazeres, J P Conde","doi":"10.1088/0957-4484/16/10/014","DOIUrl":null,"url":null,"abstract":"<p><p>Single, square voltage pulses in the microsecond timescale result in selective 5'-end covalent bonding (immobilization) of thiolated single-stranded (ss) DNA probes to a modified silicon dioxide flat surface and in specific hybridization of ssDNA targets to the immobilized probe. Immobilization and hybridization rates using microsecond voltage pulses at or below 1 V are at least 10(8) times faster than in the passive control reactions performed without electric field (E), and can be achieved with at least three differently functionalized thin-film surfaces on plastic or glass substrates. The systematic study of the effect of DNA probe and target concentrations, of DNA probe and target length, and the application of asymmetric pulses on E-assisted DNA immobilization and hybridization showed that: (1) the rapidly rising edge of the pulse is most critical to the E-assisted processes, but the duration of the pulse is also important; (2) E-assisted immobilization and hybridization can be performed with micrometre-sized pixels, proving the potential for use on microelectronic length scales, and the applied voltage can be scaled down together with the electrode spacing to as low as 25 mV; and (3) longer DNA chains reduce the yield in the E-assisted immobilization and hybridization because the density of physisorbed single-stranded DNA is reduced. The results show that the E-induced reactions can be used as a general method in DNA microarrays to produce high-density DNA chips (E-immobilization) and speed the microarray-based analysis (E-hybridization).</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"16 10","pages":"2061-71"},"PeriodicalIF":2.8000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0957-4484/16/10/014","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/0957-4484/16/10/014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2005/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 36
Abstract
Single, square voltage pulses in the microsecond timescale result in selective 5'-end covalent bonding (immobilization) of thiolated single-stranded (ss) DNA probes to a modified silicon dioxide flat surface and in specific hybridization of ssDNA targets to the immobilized probe. Immobilization and hybridization rates using microsecond voltage pulses at or below 1 V are at least 10(8) times faster than in the passive control reactions performed without electric field (E), and can be achieved with at least three differently functionalized thin-film surfaces on plastic or glass substrates. The systematic study of the effect of DNA probe and target concentrations, of DNA probe and target length, and the application of asymmetric pulses on E-assisted DNA immobilization and hybridization showed that: (1) the rapidly rising edge of the pulse is most critical to the E-assisted processes, but the duration of the pulse is also important; (2) E-assisted immobilization and hybridization can be performed with micrometre-sized pixels, proving the potential for use on microelectronic length scales, and the applied voltage can be scaled down together with the electrode spacing to as low as 25 mV; and (3) longer DNA chains reduce the yield in the E-assisted immobilization and hybridization because the density of physisorbed single-stranded DNA is reduced. The results show that the E-induced reactions can be used as a general method in DNA microarrays to produce high-density DNA chips (E-immobilization) and speed the microarray-based analysis (E-hybridization).
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.