Natural language query in the biochemistry and molecular biology domains based on cognition search™.

Elizabeth J Goldsmith, Saurabh Mendiratta, Radha Akella, Kathleen Dahlgren
{"title":"Natural language query in the biochemistry and molecular biology domains based on cognition search™.","authors":"Elizabeth J Goldsmith,&nbsp;Saurabh Mendiratta,&nbsp;Radha Akella,&nbsp;Kathleen Dahlgren","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>With the increasing volume of scientific papers and heterogeneous nomenclature in the biomedical literature, it is apparent that an improvement over standard pattern matching available in existing search engines is required. Cognition Search Information Retrieval (CSIR) is a natural language processing (NLP) technology that possesses a large dictionary (lexicon) and large semantic databases, such that search can be based on meaning. Encoded synonymy, ontological relationships, phrases, and seeds for word sense disambiguation offer significant improvement over pattern matching. Thus, the CSIR has the right architecture to form the basis for a scientific search engine.</p><p><strong>Result: </strong>Here we have augmented CSIR to improve access to the MEDLINE database of scientific abstracts. New biochemical, molecular biological and medical language and acronyms were introduced from curated web-based sources. The resulting system was used to interpret MEDLINE abstracts. Meaning-based search of MEDLINE abstracts yields high precision (estimated at >90%), and high recall (estimated at >90%), where synonym, ontology, phrases and sense seeds have been encoded. The present implementation can be found at http://MEDLINE.cognition.com.</p><p><strong>Contact: </strong>Elizabeth.goldsmith@UTsouthwestern.edu Kathleen.dahlgren@cognition.com.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2009 ","pages":"32-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: With the increasing volume of scientific papers and heterogeneous nomenclature in the biomedical literature, it is apparent that an improvement over standard pattern matching available in existing search engines is required. Cognition Search Information Retrieval (CSIR) is a natural language processing (NLP) technology that possesses a large dictionary (lexicon) and large semantic databases, such that search can be based on meaning. Encoded synonymy, ontological relationships, phrases, and seeds for word sense disambiguation offer significant improvement over pattern matching. Thus, the CSIR has the right architecture to form the basis for a scientific search engine.

Result: Here we have augmented CSIR to improve access to the MEDLINE database of scientific abstracts. New biochemical, molecular biological and medical language and acronyms were introduced from curated web-based sources. The resulting system was used to interpret MEDLINE abstracts. Meaning-based search of MEDLINE abstracts yields high precision (estimated at >90%), and high recall (estimated at >90%), where synonym, ontology, phrases and sense seeds have been encoded. The present implementation can be found at http://MEDLINE.cognition.com.

Contact: Elizabeth.goldsmith@UTsouthwestern.edu Kathleen.dahlgren@cognition.com.

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于认知搜索的生物化学和分子生物学领域的自然语言查询。
动机:随着科学论文数量的增加和生物医学文献中异质命名法的增多,显然需要对现有搜索引擎中可用的标准模式匹配进行改进。认知搜索信息检索(CSIR)是一种自然语言处理(NLP)技术,它拥有大型词典(lexicon)和大型语义数据库,可以基于意义进行搜索。编码的同义词、本体关系、短语和用于词义消歧的种子提供了比模式匹配更大的改进。因此,CSIR具有形成科学搜索引擎基础的正确架构。结果:我们增强了CSIR,改善了对MEDLINE科学摘要数据库的访问。新的生物化学、分子生物学和医学语言和缩略语从经过整理的网络资源中引入。结果系统用于解释MEDLINE摘要。MEDLINE摘要的基于意义的搜索产生了高精度(估计>90%)和高召回率(估计>90%),其中同义词、本体、短语和意义种子已经编码。目前的实现可以在http://MEDLINE.cognition.com.Contact: Elizabeth.goldsmith@UTsouthwestern.edu Kathleen.dahlgren@cognition.com找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of eligibility criteria complexity in clinical trials. The human studies database project: federating human studies design data using the ontology of clinical research. Analysis of False Positive Errors of an Acute Respiratory Infection Text Classifier due to Contextual Features. An R package for simulation experiments evaluating clinical trial designs. Ontology mapping and data discovery for the translational investigator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1