Data Synthesis and Tool Development for Exploring Imaging Genomic Patterns.

Sungeun Kim, Li Shen, Andrew J Saykin, John D West
{"title":"Data Synthesis and Tool Development for Exploring Imaging Genomic Patterns.","authors":"Sungeun Kim,&nbsp;Li Shen,&nbsp;Andrew J Saykin,&nbsp;John D West","doi":"10.1109/CIBCB.2009.4925742","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in brain imaging and high throughput genotyping techniques enable new approaches to study the influence of genetic variation on brain structure and function. However, major computational challenges are bottlenecks for comprehensive joint analysis of these high-dimensional image and genomic data. We report our initial progress in developing an imaging genomic browsing system for integrated exploration of neuroimaging and genomic data. We describe a method for synthesizing a set of realistic neuroimaging and genomic data, where the relationships between imaging phenotypes and genotypes are known. This data set is used to demonstrate the functionality of our system, which is designed for effectively exploring the neuroanatomical distribution of statistical results that measure the associations between brain imaging phenotypes and genotypes on a genome-wide scale. The proposed system has substantial potential for enabling discovery of important imaging genomic associations through visual evaluation and can be extended towards several directions.</p>","PeriodicalId":89148,"journal":{"name":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2009 ","pages":"298-305"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIBCB.2009.4925742","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent advances in brain imaging and high throughput genotyping techniques enable new approaches to study the influence of genetic variation on brain structure and function. However, major computational challenges are bottlenecks for comprehensive joint analysis of these high-dimensional image and genomic data. We report our initial progress in developing an imaging genomic browsing system for integrated exploration of neuroimaging and genomic data. We describe a method for synthesizing a set of realistic neuroimaging and genomic data, where the relationships between imaging phenotypes and genotypes are known. This data set is used to demonstrate the functionality of our system, which is designed for effectively exploring the neuroanatomical distribution of statistical results that measure the associations between brain imaging phenotypes and genotypes on a genome-wide scale. The proposed system has substantial potential for enabling discovery of important imaging genomic associations through visual evaluation and can be extended towards several directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索成像基因组模式的数据综合和工具开发。
脑成像和高通量基因分型技术的最新进展为研究遗传变异对脑结构和功能的影响提供了新的途径。然而,主要的计算挑战是这些高维图像和基因组数据的综合联合分析的瓶颈。我们报告了我们在开发成像基因组浏览系统的初步进展,该系统用于神经成像和基因组数据的综合探索。我们描述了一种方法来合成一组现实的神经成像和基因组数据,其中成像表型和基因型之间的关系是已知的。该数据集用于展示我们系统的功能,该系统旨在有效地探索统计结果的神经解剖学分布,这些统计结果可在全基因组范围内测量脑成像表型和基因型之间的关联。所提出的系统具有通过视觉评估发现重要成像基因组关联的巨大潜力,并且可以向几个方向扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison tools for lncRNA identification: analysis among plants and humans Message from the conference chair Messages from the technical program chairs Side-chain flexibility in protein docking Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1