Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Kyung Dae Ko, Tarek El-Ghazawi, Dongkyu Kim, Hiroki Morizono
{"title":"Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.","authors":"Kyung Dae Ko,&nbsp;Tarek El-Ghazawi,&nbsp;Dongkyu Kim,&nbsp;Hiroki Morizono","doi":"10.1109/CIBCB.2014.6845506","DOIUrl":null,"url":null,"abstract":"<p><p>Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.</p>","PeriodicalId":89148,"journal":{"name":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2014 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIBCB.2014.6845506","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2014.6845506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用云计算大数据方法的电子健康记录数据预测运动神经元疾病进展的严重程度。
运动神经元疾病(mnd)是一类以运动神经元损伤为主的进行性神经系统疾病。准确的诊断对于老年痴呆症患者的治疗非常重要,因为老年痴呆症没有标准的治疗方法。然而,在这类疾病中,假阳性和假阴性诊断的比率仍然很高。就肌萎缩性侧索硬化症(ALS)而言,目前的估计表明10%的诊断为假阳性,而44%的诊断为假阴性。在这项研究中,我们开发了一种新的方法来分析患者医疗记录中的特定医疗信息,以预测运动神经元疾病的进展。我们使用Hbase和Apache Mahout的随机森林分类器对ALS临床试验数据库(PRO-ACT)站点提供的病历进行分析,预测ALS进展的准确率达到66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison tools for lncRNA identification: analysis among plants and humans Message from the conference chair Messages from the technical program chairs Side-chain flexibility in protein docking Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1