Bio-imaging, detection and analysis by using nanostructures as SERS substrates.

Wei Xie, Penghe Qiu, Chuanbin Mao
{"title":"Bio-imaging, detection and analysis by using nanostructures as SERS substrates.","authors":"Wei Xie,&nbsp;Penghe Qiu,&nbsp;Chuanbin Mao","doi":"10.1039/C0JM03301D","DOIUrl":null,"url":null,"abstract":"<p><p>Surface-enhanced Raman scattering (SERS) is a phenomenon that occurs on nanoscale-roughed metallic surface. The magnitude of the Raman scattering signal can be greatly enhanced when the scatterer is placed in the very close vicinity of the surface, which enables this phenomenon to be a highly sensitive analytical technique. SERS inherits the general strongpoint of conventional Raman spectroscopy and overcomes the inherently small cross section problem of a Raman scattering. It is a sensitive and nondestructive spectroscopic method for biological samples, and can be exploited either for the delivery of molecular structural information or for the detection of trace levels of analytes. Therefore, SERS has long been regarded as a powerful tool in biomedical research. Metallic nanostructure plays a key role in all the biomedical applications of SERS because the enhanced Raman signal can only be obtained on the surface of a finely divided substrate. This review focuses on progress made in the use of SERS as an analytical technique in bio-imaging, analysis and detection. Recent progress in the fabrication of SERS active nanostructures is also highlighted.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"21 14","pages":"5190-5202"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C0JM03301D","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C0JM03301D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

Surface-enhanced Raman scattering (SERS) is a phenomenon that occurs on nanoscale-roughed metallic surface. The magnitude of the Raman scattering signal can be greatly enhanced when the scatterer is placed in the very close vicinity of the surface, which enables this phenomenon to be a highly sensitive analytical technique. SERS inherits the general strongpoint of conventional Raman spectroscopy and overcomes the inherently small cross section problem of a Raman scattering. It is a sensitive and nondestructive spectroscopic method for biological samples, and can be exploited either for the delivery of molecular structural information or for the detection of trace levels of analytes. Therefore, SERS has long been regarded as a powerful tool in biomedical research. Metallic nanostructure plays a key role in all the biomedical applications of SERS because the enhanced Raman signal can only be obtained on the surface of a finely divided substrate. This review focuses on progress made in the use of SERS as an analytical technique in bio-imaging, analysis and detection. Recent progress in the fabrication of SERS active nanostructures is also highlighted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米结构作为SERS基底的生物成像、检测和分析。
表面增强拉曼散射(SERS)是发生在纳米级粗糙金属表面的一种现象。当散射体放置在非常接近表面的位置时,拉曼散射信号的幅度可以大大增强,这使得这种现象成为一种高灵敏度的分析技术。SERS继承了传统拉曼光谱的一般优点,克服了拉曼散射固有的小截面问题。这是一种灵敏且无损的生物样品光谱方法,既可用于传递分子结构信息,也可用于检测痕量分析物。因此,SERS一直被认为是生物医学研究的有力工具。金属纳米结构在SERS的所有生物医学应用中起着关键作用,因为增强的拉曼信号只能在精细划分的衬底表面获得。本文综述了SERS作为一种分析技术在生物成像、分析和检测中的应用进展。本文还重点介绍了SERS活性纳米结构制备的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry
Journal of Materials Chemistry 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
1.5 months
期刊最新文献
Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups. Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion. Location-tuned relaxivity in Gd-doped mesoporous silica nanoparticles. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1