Sai Archana Krovi, Elden P Swindell, Thomas V O'Halloran, Sonbinh T Nguyen
Polymer nanoparticles (PNPs) possessing a high density of drug payload have been successfully stabilized against aggregation in biological buffers after amine modification, which renders these PNPs positively charged. The resulting charge-stabilized PNPs retain their original narrow particle size distributions and well-defined spherical morphologies. This stabilization allows these PNPs to have an improved anti-proliferative effect on MDA-MB-231-Br human breast cancer cells compared to non-functionalized PNPs. As a non-cytotoxic control, similar surface-modified PNPs containing cholesterol in place of doxorubicin did not inhibit cell proliferation, indicating that the induced cytotoxic response was solely due to the doxorubicin release from the PNPs.
{"title":"Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups.","authors":"Sai Archana Krovi, Elden P Swindell, Thomas V O'Halloran, Sonbinh T Nguyen","doi":"10.1039/C2JM35420A","DOIUrl":"https://doi.org/10.1039/C2JM35420A","url":null,"abstract":"<p><p>Polymer nanoparticles (PNPs) possessing a high density of drug payload have been successfully stabilized against aggregation in biological buffers after amine modification, which renders these PNPs positively charged. The resulting charge-stabilized PNPs retain their original narrow particle size distributions and well-defined spherical morphologies. This stabilization allows these PNPs to have an improved anti-proliferative effect on MDA-MB-231-Br human breast cancer cells compared to non-functionalized PNPs. As a non-cytotoxic control, similar surface-modified PNPs containing cholesterol in place of doxorubicin did not inhibit cell proliferation, indicating that the induced cytotoxic response was solely due to the doxorubicin release from the PNPs.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 48","pages":"25463-25470"},"PeriodicalIF":0.0,"publicationDate":"2012-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM35420A","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31319831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nancy Hom, Kinjal R Mehta, Tsengming Chou, Amy B Foraker, Frances M Brodsky, Kent Kirshenbaum, Jin K Montclare
Recombinant clathrin protein fragments form assemblies that template gold nanocrystals in an array across the latticed surface. The nanocrystals exhibit unusual anisotropic morphologies with long range ordering, both of which are dependent upon the presence of a hexahistidine tag on the clathrin heavy chain fragments.
{"title":"Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments.","authors":"Nancy Hom, Kinjal R Mehta, Tsengming Chou, Amy B Foraker, Frances M Brodsky, Kent Kirshenbaum, Jin K Montclare","doi":"10.1039/C2JM35019J","DOIUrl":"10.1039/C2JM35019J","url":null,"abstract":"<p><p>Recombinant clathrin protein fragments form assemblies that template gold nanocrystals in an array across the latticed surface. The nanocrystals exhibit unusual anisotropic morphologies with long range ordering, both of which are dependent upon the presence of a hexahistidine tag on the clathrin heavy chain fragments.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 44","pages":"23335-23339"},"PeriodicalIF":0.0,"publicationDate":"2012-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM35019J","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31564940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous studies have demonstrated the influence of calcium phosphate (CaP) mineral coating characteristics on cell attachment, proliferation, and differentiation. However, the wide range of mineral properties that can potentially influence cell behavior calls for an efficient platform to screen for the effects of specific mineral properties. To address this need, we have developed an efficient well-plate format to probe for the effects of mineral coating properties on stem cell behavior. Specifically, here we systematically controlled mineral coating morphology by modulating ion concentrations in modified simulated body fluids (mSBF) during mineral nucleation and growth. We found that mineral micro-morphology could be gradually changed from spherulitic, to plate-like, to net-like depending on [Ca2+] and [PO43-] in mSBF solutions, while other mineral properties (Ca/P ratio, crystallinity, dissolution rate) remained constant. Differences in mineral morphology resulted in significant differences in stem cell attachment and expansion in vitro. These findings suggest that an enhanced throughput mineral coating format may be useful to identify mineral coating properties for optimal stem cell attachment and expansion, which may ultimately permit efficient intraoperative seeding of patient derived stem cells.
{"title":"The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion.","authors":"Siyoung Choi, William L Murphy","doi":"10.1039/C2JM33354F","DOIUrl":"https://doi.org/10.1039/C2JM33354F","url":null,"abstract":"<p><p>Previous studies have demonstrated the influence of calcium phosphate (CaP) mineral coating characteristics on cell attachment, proliferation, and differentiation. However, the wide range of mineral properties that can potentially influence cell behavior calls for an efficient platform to screen for the effects of specific mineral properties. To address this need, we have developed an efficient well-plate format to probe for the effects of mineral coating properties on stem cell behavior. Specifically, here we systematically controlled mineral coating morphology by modulating ion concentrations in modified simulated body fluids (mSBF) during mineral nucleation and growth. We found that mineral micro-morphology could be gradually changed from spherulitic, to plate-like, to net-like depending on [Ca<sup>2+</sup>] and [PO<sub>4</sub><sup>3-</sup>] in mSBF solutions, while other mineral properties (Ca/P ratio, crystallinity, dissolution rate) remained constant. Differences in mineral morphology resulted in significant differences in stem cell attachment and expansion <i>in vitro</i>. These findings suggest that an enhanced throughput mineral coating format may be useful to identify mineral coating properties for optimal stem cell attachment and expansion, which may ultimately permit efficient intraoperative seeding of patient derived stem cells.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 48","pages":"25288-25295"},"PeriodicalIF":0.0,"publicationDate":"2012-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM33354F","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33038906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In tuning the sub-particle localisation of Gd(III) binding macrocycles within a mesoporous scaffold, nanoparticle contrast agents of unprecedented relaxivity and low Gd(III) loadings can be realised.
{"title":"Location-tuned relaxivity in Gd-doped mesoporous silica nanoparticles.","authors":"Jason J Davis, Wen-Yen Huang, Gemma-Louise Davies","doi":"10.1039/C2JM35116A","DOIUrl":"https://doi.org/10.1039/C2JM35116A","url":null,"abstract":"<p><p>In tuning the sub-particle localisation of Gd(III) binding macrocycles within a mesoporous scaffold, nanoparticle contrast agents of unprecedented relaxivity and low Gd(III) loadings can be realised.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 43","pages":"22848-22850"},"PeriodicalIF":0.0,"publicationDate":"2012-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM35116A","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33369363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyun-Su Lee, Michael Q Yee, Yonaton Y Eckmann, Noreen J Hickok, David M Eckmann, Russell J Composto
This study investigates the swelling of grafted polycationic brushes as a function of pH and anion type. The brushes are chitosan (CH) and chitosans with 27% and 51% degree of substitution (DS) of quaternary ammonium salt, denoted as CH-Q(25) and CH-Q(50), respectively. The water content and swelling behaviors are monitored using in situ quartz-crystal microbalance with dissipation (QCM-D). The pH varies from ~3.5 to 8.5, and the counter anion types include chloride, acetate, and citrate. At fixed pH, the water content and brush swelling increase as the DS increases. Whereas the CH-Q(50) brush layer shows symmetric swelling with a minimum near pH = 4.5, the swelling of CH and CH-Q(25) is relatively constant as pH decreases from 8.2 to 5.5, and then begins to increase near pH 4. These studies indicate that the symmetric swelling of CH-Q(50) is likely attributed to increasing protonation of primary amines for pH values below pH 6.5 and the quaternary ammonium salts above pH 6.5. At pH 4, the swelling of the CH brush increases upon exchanging the smaller chloridewith a bulkier acetate anion, which is less effective at screening intra/inter molecular repulsion. In contrast, upon exchanging the acetate with trifunctional citrate, CH and CH-Q(25) brushes collapse by 53 and 42%, respectively, because the citrate forms ionic cross-links. To test antibacterial properties, silicon oxide, CH and CH-Q(50) brush layers are exposed to 10(7)-10(8) cfu/ml of S. aureus for two days at 37 °C and exposed to stepped shear stresses in 2 min intervals. Whereas an S. aureus biofilm adheres strongly to silicon oxide and CH for stresses up to 12 dyne/cm(2), biofilms on CH-Q(50) detach at a relatively low shear stress, 1.5 dyne/cm(2). Due to their high degree of swelling that can be tuned via pH, counterion size and type, chitosan and quaternary modified chitosans have potential as responsive coatings for applications including MEMS/NEMS devices and drug eluting implants.
{"title":"Reversible Swelling of Chitosan and Quaternary Ammonium Modified Chitosan Brush Layers: Effect of pH and Counter Anion Size and Functionality.","authors":"Hyun-Su Lee, Michael Q Yee, Yonaton Y Eckmann, Noreen J Hickok, David M Eckmann, Russell J Composto","doi":"10.1039/C2JM34316A","DOIUrl":"10.1039/C2JM34316A","url":null,"abstract":"<p><p>This study investigates the swelling of grafted polycationic brushes as a function of pH and anion type. The brushes are chitosan (CH) and chitosans with 27% and 51% degree of substitution (DS) of quaternary ammonium salt, denoted as CH-Q(25) and CH-Q(50), respectively. The water content and swelling behaviors are monitored using in situ quartz-crystal microbalance with dissipation (QCM-D). The pH varies from ~3.5 to 8.5, and the counter anion types include chloride, acetate, and citrate. At fixed pH, the water content and brush swelling increase as the DS increases. Whereas the CH-Q(50) brush layer shows symmetric swelling with a minimum near pH = 4.5, the swelling of CH and CH-Q(25) is relatively constant as pH decreases from 8.2 to 5.5, and then begins to increase near pH 4. These studies indicate that the symmetric swelling of CH-Q(50) is likely attributed to increasing protonation of primary amines for pH values below pH 6.5 and the quaternary ammonium salts above pH 6.5. At pH 4, the swelling of the CH brush increases upon exchanging the smaller chloridewith a bulkier acetate anion, which is less effective at screening intra/inter molecular repulsion. In contrast, upon exchanging the acetate with trifunctional citrate, CH and CH-Q(25) brushes collapse by 53 and 42%, respectively, because the citrate forms ionic cross-links. To test antibacterial properties, silicon oxide, CH and CH-Q(50) brush layers are exposed to 10(7)-10(8) cfu/ml of S. aureus for two days at 37 °C and exposed to stepped shear stresses in 2 min intervals. Whereas an S. aureus biofilm adheres strongly to silicon oxide and CH for stresses up to 12 dyne/cm(2), biofilms on CH-Q(50) detach at a relatively low shear stress, 1.5 dyne/cm(2). Due to their high degree of swelling that can be tuned via pH, counterion size and type, chitosan and quaternary modified chitosans have potential as responsive coatings for applications including MEMS/NEMS devices and drug eluting implants.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 37","pages":"19605-19616"},"PeriodicalIF":0.0,"publicationDate":"2012-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510778/pdf/nihms404646.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31096013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan Raphel, Andreina Parisi-Amon, Sarah Heilshorn
Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.
{"title":"Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.","authors":"Jordan Raphel, Andreina Parisi-Amon, Sarah Heilshorn","doi":"10.1039/C2JM31768K","DOIUrl":"10.1039/C2JM31768K","url":null,"abstract":"<p><p>Photocrosslinkable, protein-engineered biomaterials combine a rapid, controllable, cytocompatible crosslinking method with a modular design strategy to create a new family of bioactive materials. These materials have a wide range of biomedical applications, including the development of bioactive implant coatings, drug delivery vehicles, and tissue engineering scaffolds. We present the successful functionalization of a bioactive elastin-like protein with photoreactive diazirine moieties. Scalable synthesis is achieved using a standard recombinant protein expression host followed by site-specific modification of lysine residues with a heterobifunctional N-hydroxysuccinimide ester-diazirine crosslinker. The resulting biomaterial is demonstrated to be processable by spin coating, drop casting, soft lithographic patterning, and mold casting to fabricate a variety of two- and three-dimensional photocrosslinked biomaterials with length scales spanning the nanometer to millimeter range. Protein thin films proved to be highly stable over a three-week period. Cell-adhesive functional domains incorporated into the engineered protein materials were shown to remain active post-photo-processing. Human adipose-derived stem cells achieved faster rates of cell adhesion and larger spread areas on thin films of the engineered protein compared to control substrates. The ease and scalability of material production, processing versatility, and modular bioactive functionality make this recombinantly engineered protein an ideal candidate for the development of novel biomaterial coatings, films, and scaffolds.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 37","pages":"19429-19437"},"PeriodicalIF":0.0,"publicationDate":"2012-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3449156/pdf/nihms380929.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30936130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiqing Yin, Han Chang Kang, Kang Moo Huh, You Han Bae
Motivated by the limitations of liposomal drug delivery systems, we designed a novel histidine-based AB(2)-miktoarm polymer (mPEG-b-(polyHis)(2)) equipped with a phospholipid-mimic structure, low cytotoxicity, and pH-sensitivity. Using "core-first" click chemistry and ring-opening polymerization, mPEG(2kDa)-b-(polyHis(29kDa))(2) was successfully synthesized with a narrow molecular weight distribution (1.14). In borate buffer (pH 9), the miktoarm polymer self-assembled to form a nano-sized polymersome with a hydrodynamic radius of 70.2 nm and a very narrow size polydispersity (0.05). At 4.2 µmol/mg polymer, mPEG(2kDa)-b-(polyHis(29kDa))(2) strongly buffered against acidification in the endolysosomal pH range and exhibited low cytotoxicity on a 5 d exposure. Below pH 7.4 the polymersome transitioned to cylindrical micelles, spherical micelles, and finally unimers as the pH was decreased. The pH-induced structural transition of mPEG(2kDa)-b-(polyHis(29kDa))(2) nanostructures may be caused by the increasing hydrophilic weight fraction of mPEG(2kDa)-b-(polyHis(29kDa))(2) and can help to disrupt the endosomal membrane through proton buffering and membrane fusion of mPEG(2kDa)-b-(polyHis(29kDa))(2). In addition, a hydrophilic model dye, 5(6)-carboxyfluorescein encapsulated into the aqueous lumen of the polymersome showed a slow, sustained release at pH 7.4 but greatly accelerated release below pH 6.8, indicating a desirable pH sensitivity of the system in the range of endosomal pH. Therefore, this polymersome that is based on a biocompatible histidine-based miktoarm polymer and undergoes acid-induced transformations could serve as a drug delivery vehicle for chemical and biological drugs.
{"title":"Biocompatible, pH-sensitive AB(2) Miktoarm Polymer-Based Polymersomes: Preparation, Characterization, and Acidic pH-Activated Nanostructural Transformation.","authors":"Haiqing Yin, Han Chang Kang, Kang Moo Huh, You Han Bae","doi":"10.1039/C2JM33750A","DOIUrl":"https://doi.org/10.1039/C2JM33750A","url":null,"abstract":"<p><p>Motivated by the limitations of liposomal drug delivery systems, we designed a novel histidine-based AB(2)-miktoarm polymer (mPEG-b-(polyHis)(2)) equipped with a phospholipid-mimic structure, low cytotoxicity, and pH-sensitivity. Using \"core-first\" click chemistry and ring-opening polymerization, mPEG(2kDa)-b-(polyHis(29kDa))(2) was successfully synthesized with a narrow molecular weight distribution (1.14). In borate buffer (pH 9), the miktoarm polymer self-assembled to form a nano-sized polymersome with a hydrodynamic radius of 70.2 nm and a very narrow size polydispersity (0.05). At 4.2 µmol/mg polymer, mPEG(2kDa)-b-(polyHis(29kDa))(2) strongly buffered against acidification in the endolysosomal pH range and exhibited low cytotoxicity on a 5 d exposure. Below pH 7.4 the polymersome transitioned to cylindrical micelles, spherical micelles, and finally unimers as the pH was decreased. The pH-induced structural transition of mPEG(2kDa)-b-(polyHis(29kDa))(2) nanostructures may be caused by the increasing hydrophilic weight fraction of mPEG(2kDa)-b-(polyHis(29kDa))(2) and can help to disrupt the endosomal membrane through proton buffering and membrane fusion of mPEG(2kDa)-b-(polyHis(29kDa))(2). In addition, a hydrophilic model dye, 5(6)-carboxyfluorescein encapsulated into the aqueous lumen of the polymersome showed a slow, sustained release at pH 7.4 but greatly accelerated release below pH 6.8, indicating a desirable pH sensitivity of the system in the range of endosomal pH. Therefore, this polymersome that is based on a biocompatible histidine-based miktoarm polymer and undergoes acid-induced transformations could serve as a drug delivery vehicle for chemical and biological drugs.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 36","pages":"91968-19178"},"PeriodicalIF":0.0,"publicationDate":"2012-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM33750A","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30926901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V Chandana Epa, Jing Yang, Ying Mei, Andrew L Hook, Robert Langer, Daniel G Anderson, Martyn C Davies, Morgan R Alexander, David A Winkler
Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.
{"title":"Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.","authors":"V Chandana Epa, Jing Yang, Ying Mei, Andrew L Hook, Robert Langer, Daniel G Anderson, Martyn C Davies, Morgan R Alexander, David A Winkler","doi":"10.1039/C2JM34782B","DOIUrl":"10.1039/C2JM34782B","url":null,"abstract":"<p><p>Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 39","pages":"20902-20906"},"PeriodicalIF":0.0,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM34782B","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31781254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela F Coutinho, Shilpa Sant, Mojdeh Shakiba, Ben Wang, Manuela E Gomes, Nuno M Neves, Rui L Reis, Ali Khademhosseini
Chitosan (CHT) based polyelectrolyte complexes (PECs) have been receiving great attention for tissue engineering approaches. These hydrogels are held together by ionic forces and can be disrupted by changes in physiological conditions. In this study, we present a new class of CHT-based PEC hydrogels amenable to stabilization by chemical crosslinking. The photocrosslinkable anionic methacrylated gellan gum (MeGG) was complexed with cationic CHT and exposed to light, forming a PEC hydrogel. The chemical characterization of the photocrosslinkable PEC hydrogel by Fourier transform infrared spectroscopy (FTIR) revealed absorption peaks specific to the raw polymers. A significantly higher swelling ratio was observed for the PEC hydrogel with higher CHT content. The molecular interactions between both polysaccharides were evaluated chemically and microscopically, indicating the diffusion of CHT to the interior of the hydrogel. We hypothesized that the addition of MeGG to CHT solution first leads to a membrane formation around MeGG. Then, migration of CHT inside the MeGG hydrogel occurs to balance the electrostatic charges. The photocrosslinkable feature of MeGG further allowed the formation of cell-laden microscale hydrogel units with different shapes and sizes. Overall, this system is potentially useful for a variety of applications including the replication of microscale features of tissues for modular tissue engineering.
{"title":"Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum.","authors":"Daniela F Coutinho, Shilpa Sant, Mojdeh Shakiba, Ben Wang, Manuela E Gomes, Nuno M Neves, Rui L Reis, Ali Khademhosseini","doi":"10.1039/C2JM31374J","DOIUrl":"https://doi.org/10.1039/C2JM31374J","url":null,"abstract":"<p><p>Chitosan (CHT) based polyelectrolyte complexes (PECs) have been receiving great attention for tissue engineering approaches. These hydrogels are held together by ionic forces and can be disrupted by changes in physiological conditions. In this study, we present a new class of CHT-based PEC hydrogels amenable to stabilization by chemical crosslinking. The photocrosslinkable anionic methacrylated gellan gum (MeGG) was complexed with cationic CHT and exposed to light, forming a PEC hydrogel. The chemical characterization of the photocrosslinkable PEC hydrogel by Fourier transform infrared spectroscopy (FTIR) revealed absorption peaks specific to the raw polymers. A significantly higher swelling ratio was observed for the PEC hydrogel with higher CHT content. The molecular interactions between both polysaccharides were evaluated chemically and microscopically, indicating the diffusion of CHT to the interior of the hydrogel. We hypothesized that the addition of MeGG to CHT solution first leads to a membrane formation around MeGG. Then, migration of CHT inside the MeGG hydrogel occurs to balance the electrostatic charges. The photocrosslinkable feature of MeGG further allowed the formation of cell-laden microscale hydrogel units with different shapes and sizes. Overall, this system is potentially useful for a variety of applications including the replication of microscale features of tissues for modular tissue engineering.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 33","pages":"17262-17271"},"PeriodicalIF":0.0,"publicationDate":"2012-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C2JM31374J","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40215440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gregory J Hardy, Rahul Nayak, S Munir Alam, Joseph G Shapter, Frank Heinrich, Stefan Zauscher
In this study, we present a technique to create a complex, high cholesterol-containing supported lipid bilayers (SLBs) using α-helical (AH) peptide-induced vesicle fusion. Vesicles consisting of POPC : POPE : POPS : SM : Chol (9.35 : 19.25 : 8.25 : 18.15 : 45.00) were used to form a SLB that models the native composition of the human immunodeficiency virus-1 (HIV-1) lipid envelope. In the absence of AH peptides, these biomimetic vesicles fail to form a complete SLB. We verified and characterized AH peptide-induced vesicle fusion by quartz crystal microbalance with dissipation monitoring, neutron reflectivity, and atomic force microscopy. Successful SLB formation entailed a characteristic frequency shift of -35.4 ± 2.0 Hz and a change in dissipation energy of 1.91 ± 0.52 × 10-6. Neutron reflectivity measurements determined the SLB thickness to be 49.9 +1.9-1.5 Å, and showed the SLB to be 100 +0.0-0.1% complete and void of residual AH peptide after washing. Atomic force microscopy imaging confirmed complete SLB formation and revealed three distinct domains with no visible defects. This vesicle fusion technique gives researchers access to a complex SLB composition with high cholesterol content and thus the ability to better recapitulate the native HIV-1 lipid membrane.
{"title":"Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion.","authors":"Gregory J Hardy, Rahul Nayak, S Munir Alam, Joseph G Shapter, Frank Heinrich, Stefan Zauscher","doi":"10.1039/C2JM32016A","DOIUrl":"10.1039/C2JM32016A","url":null,"abstract":"<p><p>In this study, we present a technique to create a complex, high cholesterol-containing supported lipid bilayers (SLBs) using α-helical (AH) peptide-induced vesicle fusion. Vesicles consisting of POPC : POPE : POPS : SM : Chol (9.35 : 19.25 : 8.25 : 18.15 : 45.00) were used to form a SLB that models the native composition of the human immunodeficiency virus-1 (HIV-1) lipid envelope. In the absence of AH peptides, these biomimetic vesicles fail to form a complete SLB. We verified and characterized AH peptide-induced vesicle fusion by quartz crystal microbalance with dissipation monitoring, neutron reflectivity, and atomic force microscopy. Successful SLB formation entailed a characteristic frequency shift of -35.4 ± 2.0 Hz and a change in dissipation energy of 1.91 ± 0.52 × 10<sup>-6</sup>. Neutron reflectivity measurements determined the SLB thickness to be 49.9 <sup>+1.9</sup><sub>-1.5</sub> Å, and showed the SLB to be 100 <sup>+0.0</sup><sub>-0.1</sub>% complete and void of residual AH peptide after washing. Atomic force microscopy imaging confirmed complete SLB formation and revealed three distinct domains with no visible defects. This vesicle fusion technique gives researchers access to a complex SLB composition with high cholesterol content and thus the ability to better recapitulate the native HIV-1 lipid membrane.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"22 37","pages":"19506-19513"},"PeriodicalIF":0.0,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728912/pdf/nihms-389673.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31275109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}