Unsupervised large margin discriminative projection.

IEEE transactions on neural networks Pub Date : 2011-09-01 Epub Date: 2011-07-29 DOI:10.1109/TNN.2011.2161772
Fei Wang, Bin Zhao, Changshui Zhang
{"title":"Unsupervised large margin discriminative projection.","authors":"Fei Wang,&nbsp;Bin Zhao,&nbsp;Changshui Zhang","doi":"10.1109/TNN.2011.2161772","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new dimensionality reduction method called maximum margin projection (MMP), which aims to project data samples into the most discriminative subspace, where clusters are most well-separated. Specifically, MMP projects input patterns onto the normal of the maximum margin separating hyperplanes. As a result, MMP only depends on the geometry of the optimal decision boundary and not on the distribution of those data points lying further away from this boundary. Technically, MMP is formulated as an integer programming problem and we propose a column generation algorithm to solve it. Moreover, through a combination of theoretical results and empirical observations we show that the computation time needed for MMP can be treated as linear in the dataset size. Experimental results on both toy and real-world datasets demonstrate the effectiveness of MMP.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 9","pages":"1446-56"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2161772","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2161772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We propose a new dimensionality reduction method called maximum margin projection (MMP), which aims to project data samples into the most discriminative subspace, where clusters are most well-separated. Specifically, MMP projects input patterns onto the normal of the maximum margin separating hyperplanes. As a result, MMP only depends on the geometry of the optimal decision boundary and not on the distribution of those data points lying further away from this boundary. Technically, MMP is formulated as an integer programming problem and we propose a column generation algorithm to solve it. Moreover, through a combination of theoretical results and empirical observations we show that the computation time needed for MMP can be treated as linear in the dataset size. Experimental results on both toy and real-world datasets demonstrate the effectiveness of MMP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督的大边际判别投影。
我们提出了一种新的降维方法,称为最大边际投影(MMP),该方法旨在将数据样本投影到最具判别性的子空间中,其中聚类分离得最好。具体来说,MMP将输入模式投影到分隔超平面的最大边距的法线上。因此,MMP仅依赖于最优决策边界的几何形状,而不依赖于远离该边界的那些数据点的分布。从技术上讲,MMP被表述为一个整数规划问题,我们提出了一种列生成算法来解决它。此外,通过理论结果和经验观察的结合,我们表明MMP所需的计算时间在数据集大小上可以被视为线性的。在玩具和现实数据集上的实验结果都证明了MMP的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
期刊最新文献
Extracting rules from neural networks as decision diagrams. Design of a data-driven predictive controller for start-up process of AMT vehicles. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1