Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans.

Jing Chen, Changrun Guo, Meng Wang, Lei Huang, Liping Wang, Congcong Mi, Jing Li, Xuexun Fang, Chuanbin Mao, Shukun Xu
{"title":"Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans.","authors":"Jing Chen, Changrun Guo, Meng Wang, Lei Huang, Liping Wang, Congcong Mi, Jing Li, Xuexun Fang, Chuanbin Mao, Shukun Xu","doi":"10.1039/c0jm02854a","DOIUrl":null,"url":null,"abstract":"<p><p>β-NaYF(4) : Yb,Er upconversion nanoparticles (UCNPs) can emit bright green fluorescence under near-infrared (NIR) light excitation which is safe to the body and can penetrate deeply into tissues. The application of UCNPs in biolabeling and imaging has received great attention recently. In this work, β-NaYF(4) : Yb,Er UCNPs with an average size of 35 nm, uniformly spherical shape, and surface modified with amino groups were synthesized by a one-step green solvothermal approach through the use of room-temperature ionic liquids as the reactant, co-solvent and template. The as-prepared UCNPs were introduced into Caenorhabditis elegans (C. elegans) to achieve successful in vivo imaging. We found that longer incubation time, higher UCNP concentration and smaller UCNP size can make the in vivo fluorescence of C. elegans much brighter and more continuous along their body. The worms have no apparent selectivity on ingestion of the UCNPs capped with different capping ligands while having similar size and shape. The next generation of worms did not show fluorescence under excitation. In addition, low toxicity of the nanoparticles was demonstrated by investigating the survival rates of the worms in the presence of the UCNPs. Our work demonstrates the potential application of the UCNPs in studying the biological behavior of organisms, and lays the foundation for further development of the UCNPs in the detection and diagnosis of diseases.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"21 8","pages":"2632"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109753/pdf/nihms295890.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/c0jm02854a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

β-NaYF(4) : Yb,Er upconversion nanoparticles (UCNPs) can emit bright green fluorescence under near-infrared (NIR) light excitation which is safe to the body and can penetrate deeply into tissues. The application of UCNPs in biolabeling and imaging has received great attention recently. In this work, β-NaYF(4) : Yb,Er UCNPs with an average size of 35 nm, uniformly spherical shape, and surface modified with amino groups were synthesized by a one-step green solvothermal approach through the use of room-temperature ionic liquids as the reactant, co-solvent and template. The as-prepared UCNPs were introduced into Caenorhabditis elegans (C. elegans) to achieve successful in vivo imaging. We found that longer incubation time, higher UCNP concentration and smaller UCNP size can make the in vivo fluorescence of C. elegans much brighter and more continuous along their body. The worms have no apparent selectivity on ingestion of the UCNPs capped with different capping ligands while having similar size and shape. The next generation of worms did not show fluorescence under excitation. In addition, low toxicity of the nanoparticles was demonstrated by investigating the survival rates of the worms in the presence of the UCNPs. Our work demonstrates the potential application of the UCNPs in studying the biological behavior of organisms, and lays the foundation for further development of the UCNPs in the detection and diagnosis of diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NaYF(4) : Yb,Er 上转换纳米磷的可控合成及其在草履虫体内成像中的应用。
β-NaYF(4):Yb,Er 上转换纳米粒子(UCNPs)在近红外(NIR)光激发下可发出明亮的绿色荧光,对人体安全,可深入组织。近年来,UCNPs 在生物标记和成像中的应用受到了广泛关注。本研究以室温离子液体为反应物、助溶剂和模板,采用一步绿色溶热法合成了平均尺寸为 35 nm、球形均匀、表面经氨基修饰的β-NaYF(4) : Yb,Er UCNPs。将制备好的 UCNPs 导入秀丽隐杆线虫(C. elegans)体内,成功实现了体内成像。我们发现,较长的孵育时间、较高的 UCNP 浓度和较小的 UCNP 尺寸可使秀丽隐杆线虫体内的荧光更亮、更连续。蠕虫在摄取不同封端配体而大小和形状相似的 UCNP 时没有明显的选择性。下一代蠕虫在激发下不显示荧光。此外,通过研究蠕虫在 UCNPs 存在下的存活率,证明了纳米颗粒的低毒性。我们的工作证明了 UCNPs 在研究生物行为方面的潜在应用,并为进一步开发 UCNPs 在疾病检测和诊断方面的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry
Journal of Materials Chemistry 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
1.5 months
期刊最新文献
Improved anti-proliferative effect of doxorubicin-containing polymer nanoparticles upon surface modification with cationic groups. Anisotropic nanocrystal arrays organized on protein lattices formed by recombinant clathrin fragments. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion. Location-tuned relaxivity in Gd-doped mesoporous silica nanoparticles. Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1