Reduced tumour progression and angiogenesis in 1,2-dimethylhydrazine mice treated with NS-398 is associated with down-regulation of cyclooxygenase-2 and decreased beta-catenin nuclear localisation.
Nahida A Banu, Richard S Daly, Andrea Buda, Moganaden Moorghen, Jennifer Baker, Massimo Pignatelli
{"title":"Reduced tumour progression and angiogenesis in 1,2-dimethylhydrazine mice treated with NS-398 is associated with down-regulation of cyclooxygenase-2 and decreased beta-catenin nuclear localisation.","authors":"Nahida A Banu, Richard S Daly, Andrea Buda, Moganaden Moorghen, Jennifer Baker, Massimo Pignatelli","doi":"10.3109/15419061.2011.586754","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclooxygenase (COX)-2 is a key molecular target of colon cancer prevention. However, the mechanisms by which COX-2 inhibitors confer protective effects against tumour development are not completely understood. The aim of this study was to elucidate the effects of NS-398 in the 1,2-dimethylhydrazine (DMH) mouse model with respect to alteration in the expression of COX-2 and E-cadherin-catenin complex. Alterations in cell proliferation, apoptosis, and vascular density were investigated. NS-398 showed reduced COX-2 immunoreactivity in adenomas with a decrease in vascular density in non-dysplastic mucosa. Adenomas revealed increased E-cadherin and beta-catenin reactivity. NS-398 reduced the percentages of tumour cells with nuclear localisation of beta-catenin and cyclin D1. Bromodeoxyuridine (BrdUrd) index in adenomas was significantly higher in untreated animals. NS-398 resulted in significant increase in apoptosis in adenomas. Our results suggest a protective role of NS-398 on tumour development associated with reduced COX-2 expression, reduced vascular density and perturbation of beta-catenin signalling pathway.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"18 1-2","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2011.586754","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2011.586754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/6/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
Cyclooxygenase (COX)-2 is a key molecular target of colon cancer prevention. However, the mechanisms by which COX-2 inhibitors confer protective effects against tumour development are not completely understood. The aim of this study was to elucidate the effects of NS-398 in the 1,2-dimethylhydrazine (DMH) mouse model with respect to alteration in the expression of COX-2 and E-cadherin-catenin complex. Alterations in cell proliferation, apoptosis, and vascular density were investigated. NS-398 showed reduced COX-2 immunoreactivity in adenomas with a decrease in vascular density in non-dysplastic mucosa. Adenomas revealed increased E-cadherin and beta-catenin reactivity. NS-398 reduced the percentages of tumour cells with nuclear localisation of beta-catenin and cyclin D1. Bromodeoxyuridine (BrdUrd) index in adenomas was significantly higher in untreated animals. NS-398 resulted in significant increase in apoptosis in adenomas. Our results suggest a protective role of NS-398 on tumour development associated with reduced COX-2 expression, reduced vascular density and perturbation of beta-catenin signalling pathway.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.