Joseph E Aslan, Alex M Spencer, Cassandra P Loren, Jiaqing Pang, Heidi C Welch, Daniel L Greenberg, Owen Jt McCarty
{"title":"Characterization of the Rac guanine nucleotide exchange factor P-Rex1 in platelets.","authors":"Joseph E Aslan, Alex M Spencer, Cassandra P Loren, Jiaqing Pang, Heidi C Welch, Daniel L Greenberg, Owen Jt McCarty","doi":"10.1186/1750-2187-6-11","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Blood platelets undergo a carefully regulated change in shape to serve as the primary mediators of hemostasis and thrombosis. These processes manifest through platelet spreading and aggregation and are dependent on platelet actin cytoskeletal changes orchestrated by the Rho GTPase family member Rac1. To elucidate how Rac1 is regulated in platelets, we captured Rac1-interacting proteins from platelets and identified Rac1-associated proteins by mass spectrometry.</p><p><strong>Findings: </strong>Here, we demonstrate that Rac1 captures the Rac guanine nucleotide exchange factor P-Rex1 from platelet lysates. Western blotting experiments confirmed that P-Rex1 is expressed in platelets and associated with Rac1. To investigate the functional role of platelet P-Rex1, platelets from P-Rex1-/--deficient mice were treated with platelet agonists or exposed to platelet activating surfaces of fibrinogen, collagen and thrombin. Platelets from P-Rex1-/- mice responded to platelet agonists and activating surfaces similarly to wild type platelets.</p><p><strong>Conclusions: </strong>These findings suggest that P-Rex1 is not required for Rac1-mediated platelet activation and that the GEF activities of P-Rex1 may be more specific to GPCR chemokine receptor mediated processes in immune cells and tumor cells.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-6-11","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-6-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 20
Abstract
Background: Blood platelets undergo a carefully regulated change in shape to serve as the primary mediators of hemostasis and thrombosis. These processes manifest through platelet spreading and aggregation and are dependent on platelet actin cytoskeletal changes orchestrated by the Rho GTPase family member Rac1. To elucidate how Rac1 is regulated in platelets, we captured Rac1-interacting proteins from platelets and identified Rac1-associated proteins by mass spectrometry.
Findings: Here, we demonstrate that Rac1 captures the Rac guanine nucleotide exchange factor P-Rex1 from platelet lysates. Western blotting experiments confirmed that P-Rex1 is expressed in platelets and associated with Rac1. To investigate the functional role of platelet P-Rex1, platelets from P-Rex1-/--deficient mice were treated with platelet agonists or exposed to platelet activating surfaces of fibrinogen, collagen and thrombin. Platelets from P-Rex1-/- mice responded to platelet agonists and activating surfaces similarly to wild type platelets.
Conclusions: These findings suggest that P-Rex1 is not required for Rac1-mediated platelet activation and that the GEF activities of P-Rex1 may be more specific to GPCR chemokine receptor mediated processes in immune cells and tumor cells.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.