A parametric method for cumulative incidence modeling with a new four-parameter log-logistic distribution.

Zahra Shayan, Seyyed Mohammad Taghi Ayatollahi, Najaf Zare
{"title":"A parametric method for cumulative incidence modeling with a new four-parameter log-logistic distribution.","authors":"Zahra Shayan,&nbsp;Seyyed Mohammad Taghi Ayatollahi,&nbsp;Najaf Zare","doi":"10.1186/1742-4682-8-43","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Competing risks, which are particularly encountered in medical studies, are an important topic of concern, and appropriate analyses must be used for these data. One feature of competing risks is the cumulative incidence function, which is modeled in most studies using non- or semi-parametric methods. However, parametric models are required in some cases to ensure maximum efficiency, and to fit various shapes of hazard function.</p><p><strong>Methods: </strong>We have used the stable distributions family of Hougaard to propose a new four-parameter distribution by extending a two-parameter log-logistic distribution, and carried out a simulation study to compare the cumulative incidence estimated with this distribution with the estimates obtained using a non-parametric method. To test our approach in a practical application, the model was applied to a set of real data on fertility history.</p><p><strong>Conclusions: </strong>The results of simulation studies showed that the estimated cumulative incidence function was more accurate than non-parametric estimates in some settings. Analyses of real data indicated that the proposed distribution showed a much better fit to the data than the other distributions tested. Therefore, the new distribution is recommended for practical applications to parameterize the cumulative incidence function in competing risk settings.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-8-43","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-8-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

Background: Competing risks, which are particularly encountered in medical studies, are an important topic of concern, and appropriate analyses must be used for these data. One feature of competing risks is the cumulative incidence function, which is modeled in most studies using non- or semi-parametric methods. However, parametric models are required in some cases to ensure maximum efficiency, and to fit various shapes of hazard function.

Methods: We have used the stable distributions family of Hougaard to propose a new four-parameter distribution by extending a two-parameter log-logistic distribution, and carried out a simulation study to compare the cumulative incidence estimated with this distribution with the estimates obtained using a non-parametric method. To test our approach in a practical application, the model was applied to a set of real data on fertility history.

Conclusions: The results of simulation studies showed that the estimated cumulative incidence function was more accurate than non-parametric estimates in some settings. Analyses of real data indicated that the proposed distribution showed a much better fit to the data than the other distributions tested. Therefore, the new distribution is recommended for practical applications to parameterize the cumulative incidence function in competing risk settings.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的四参数对数-logistic分布的累积关联建模参数化方法。
背景:竞争风险,特别是在医学研究中遇到的风险,是一个重要的关注主题,必须对这些数据进行适当的分析。竞争风险的一个特征是累积关联函数,在大多数研究中使用非参数或半参数方法对其建模。然而,在某些情况下,为了保证最大的效率,并适应各种形状的危险函数,需要参数化模型。方法:利用Hougaard稳定分布族,通过对双参数log-logistic分布的扩展,提出了一种新的四参数分布,并进行了仿真研究,比较了用该分布估计的累积发生率与用非参数方法估计的累积发生率。为了在实际应用中测试我们的方法,我们将该模型应用于一组有关生育历史的真实数据。结论:模拟研究结果表明,在某些情况下,估计的累积关联函数比非参数估计更准确。对实际数据的分析表明,所提出的分布比所测试的其他分布更适合于数据。因此,新的分布被推荐用于实际应用,以参数化竞争风险设置中的累积关联函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical Biology and Medical Modelling
Theoretical Biology and Medical Modelling MATHEMATICAL & COMPUTATIONAL BIOLOGY-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.
期刊最新文献
The impact of natural disasters on the spread of COVID-19: a geospatial, agent-based epidemiology model Correction to: Statistical field theory of the transmission of nerve impulses Method for generating multiple risky barcodes of complex diseases using ant colony algorithm The role of mobility and health disparities on the transmission dynamics of Tuberculosis Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1