Application of IFT and SPSA to servo system control.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-11-10 DOI:10.1109/TNN.2011.2173804
Mircea-Bogdan Rădac, Radu-Emil Precup, Emil M Petriu, Stefan Preitl
{"title":"Application of IFT and SPSA to servo system control.","authors":"Mircea-Bogdan Rădac,&nbsp;Radu-Emil Precup,&nbsp;Emil M Petriu,&nbsp;Stefan Preitl","doi":"10.1109/TNN.2011.2173804","DOIUrl":null,"url":null,"abstract":"<p><p>This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2363-75"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2173804","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2173804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IFT和SPSA在伺服系统控制中的应用。
本文研究了迭代反馈调谐(IFT)和同步摄动随机逼近(SPSA)两种基于数据的无模型梯度随机优化技术在伺服系统控制中的应用。讨论了具有积分分量的二阶系统控制过程的典型实例。在线性二次高斯(LQG)问题的表述中,提出了新的IFT和SPSA算法来调整带有积分器的状态反馈控制器的参数。本文以基于lqg的直流伺服系统实验室设备角位置控制器设计为例,从应用的角度分析了IFT和SPSA的优缺点。IFT和SPSA算法的比较集中在对其实现的洞察上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
期刊最新文献
Extracting rules from neural networks as decision diagrams. Design of a data-driven predictive controller for start-up process of AMT vehicles. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1