The mycobiota of the salterns.

Janja Zajc, Polona Zalar, Ana Plemenitaš, Nina Gunde-Cimerman
{"title":"The mycobiota of the salterns.","authors":"Janja Zajc,&nbsp;Polona Zalar,&nbsp;Ana Plemenitaš,&nbsp;Nina Gunde-Cimerman","doi":"10.1007/978-3-642-23342-5_7","DOIUrl":null,"url":null,"abstract":"<p><p>Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-23342-5_7","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-23342-5_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 33

Abstract

Solar salterns are constructed as shallow multi-pond systems for the production of halite through evaporation of seawater. The main feature of salterns is the discontinuous salinity gradient that provides a range of well-defined habitats with increasing salinities, from moderate to hypersaline. These present one of the most extreme environments, because of the low levels of biologically available water and the toxic concentrations of ions. Up to the year 2000, hypersaline environments were considered to be populated almost exclusively by prokaryotic microorganisms till fungi were reported to be active inhabitants of solar salterns. Since then, numerous fungal species have been described in hypersaline waters around the world. The mycobiota of salterns is represented by different species of the genus Cladosporium and the related meristematic melanized black yeasts, of non-melanized yeasts, of the filamentous genera Penicillium and Aspergillus and their teleomorphic forms (Eurotium and Emericella), and of the basidiomycetous genus Wallemia. Among these, two species became new model organisms for studying the mechanisms of extreme salt tolerance: the extremely halotolerant ascomycetous black yeast Hortaea werneckii and the obligate halophilic basidiomycete Wallemia ichthyophaga.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐沼的真菌群。
太阳盐沼被建造成浅层多池系统,通过海水蒸发生产盐石。盐沼的主要特征是不连续的盐度梯度,它提供了一系列明确的栖息地,盐度从中等到高盐。由于生物可利用的水水平低和离子的毒性浓度,这些环境是最极端的环境之一。直到2000年,高盐环境被认为几乎完全由原核微生物居住,直到真菌被报道为太阳盐碱地的活跃居民。从那时起,在世界各地的高盐水中发现了许多真菌物种。salterns的真菌群由不同种类的枝孢属和相关的分生黑化酵母、非黑化酵母、丝状青霉属和曲霉属及其远形形式(Eurotium和Emericella)以及担子菌属Wallemia代表。其中,两个物种成为研究极端耐盐机制的新模式生物:极端耐盐子囊黑酵母Hortaea werneckii和专性嗜盐担子菌Wallemia ichthyophaga。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
7
期刊介绍: Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.
期刊最新文献
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1