首页 > 最新文献

Progress in molecular and subcellular biology最新文献

英文 中文
Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. 仿生聚磷酸盐材料:在再生医学中的应用。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_5
H. Schröder, Xiaohong Wang, M. Neufurth, Shunfeng Wang, Werner Mueller
{"title":"Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine.","authors":"H. Schröder, Xiaohong Wang, M. Neufurth, Shunfeng Wang, Werner Mueller","doi":"10.1007/978-3-031-01237-2_5","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_5","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"318 1","pages":"83-130"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology. 无机多磷酸盐在线粒体能量代谢和病理中的作用。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_2
M. Neginskaya, E. Pavlov
{"title":"Inorganic Polyphosphate in Mitochondrial Energy Metabolism and Pathology.","authors":"M. Neginskaya, E. Pavlov","doi":"10.1007/978-3-031-01237-2_2","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_2","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"1 1","pages":"15-26"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria. 哺乳动物线粒体的无机多磷酸盐与F0F1-ATP合成酶。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_1
Artyom Y. Baev, A. Abramov
{"title":"Inorganic Polyphosphate and F0F1-ATP Synthase of Mammalian Mitochondria.","authors":"Artyom Y. Baev, A. Abramov","doi":"10.1007/978-3-031-01237-2_1","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_1","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"262 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50985958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. 多磷酸盐在慢性伤口愈合中的作用:受损代谢能量状态的恢复。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_4
Xiaohong Wang, H. Schepler, M. Neufurth, Shunfeng Wang, H. Schröder, Werner Mueller
{"title":"Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State.","authors":"Xiaohong Wang, H. Schepler, M. Neufurth, Shunfeng Wang, H. Schröder, Werner Mueller","doi":"10.1007/978-3-031-01237-2_4","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_4","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"26 6","pages":"51-82"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. 多磷酸盐的抗病毒保护作用:一种抗冠状病毒SARS-CoV-2感染的聚阴离子无机聚合物。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_7
W. Müller, Xiaohong Wang, M. Neufurth, H. Schröder
{"title":"Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection.","authors":"W. Müller, Xiaohong Wang, M. Neufurth, H. Schröder","doi":"10.1007/978-3-031-01237-2_7","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_7","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"18 1","pages":"145-189"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. 无机多磷酸盐,线粒体和神经变性。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_3
Pedro Urquiza, M. E. Solesio
{"title":"Inorganic Polyphosphate, Mitochondria, and Neurodegeneration.","authors":"Pedro Urquiza, M. E. Solesio","doi":"10.1007/978-3-031-01237-2_3","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_3","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"221 1","pages":"27-49"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of Polyphosphate on Leukocyte Function. 多磷酸盐对白细胞功能的影响。
Q2 Medicine Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-01237-2_6
Patrick M. Suess
{"title":"Effects of Polyphosphate on Leukocyte Function.","authors":"Patrick M. Suess","doi":"10.1007/978-3-031-01237-2_6","DOIUrl":"https://doi.org/10.1007/978-3-031-01237-2_6","url":null,"abstract":"","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"39 1","pages":"131-143"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50986504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone. 内质网内分子伴侣钙网蛋白的结构分析。
Q2 Medicine Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_2
Gunnar Houen, Peter Højrup, Evaldas Ciplys, Christine Gaboriaud, Rimantas Slibinskas

Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.

钙网蛋白(Calr)是一种内质网(ER)伴侣蛋白,参与蛋白质质量控制、Ca2+调节和其他细胞过程。Calr的结构不同寻常,反映了蛋白质的不同功能:一个富含脯氨酸的β发夹臂和一个酸性的c端尾部从一个由β片三明治和α-螺旋组成的球状核心中伸出。臂和尾在Ca2+存在下相互作用,并覆盖上部β-片,在那里碳水化合物结合位点赋予伴侣蛋白亲和力。在碳水化合物结合位点的边缘是一个保守的、紧张的二硫桥,形成于人Calr的C106和C137之间,位于多肽结合位点。下部的β-sheet有几个保守的残基,包括一个特征的三联体,D166-H170-D187, Tyr172和游离的C163。除了在内质网中发挥作用外,Calr在应激时易位到细胞表面,并作为免疫监视标志物发挥作用。在一些骨髓增生性肿瘤中,酸性Ca2+结合的c端尾部转化为多碱基序列。
{"title":"Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone.","authors":"Gunnar Houen,&nbsp;Peter Højrup,&nbsp;Evaldas Ciplys,&nbsp;Christine Gaboriaud,&nbsp;Rimantas Slibinskas","doi":"10.1007/978-3-030-67696-4_2","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_2","url":null,"abstract":"<p><p>Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca<sup>2+</sup> regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca<sup>2+</sup> and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C<sup>106</sup> and C<sup>137</sup> of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D<sup>166</sup>-H<sup>170</sup>-D<sup>187</sup>, Tyr<sup>172</sup> and the free C<sup>163</sup>. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca<sup>2+</sup>-binding C-terminal tail is transformed into a polybasic sequence.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"13-25"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38949736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum. 蛋白质折叠和/或质量控制缺陷导致蛋白质在内质网聚集。
Q2 Medicine Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_6
Juthakorn Poothong, Insook Jang, Randal J Kaufman

Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.

蛋白质聚集现在是许多人类疾病的共同标志,其中大多数涉及细胞质聚集,包括阿尔茨海默病和帕金森病中的a β (AD)和突触核蛋白(PD)。然而,同样明显的是,蛋白质聚集也可以发生在内质网(ER)的管腔中,由于蛋白质功能丧失或对宿主细胞的有害影响而导致特定疾病,前者以隐性方式遗传,后者以显性方式遗传。然而,内质网中蛋白质聚集、分解和降解的机制尚不清楚。在这里,我们提供了一个因素的概述,导致蛋白质聚集在内质网和内质网如何处理聚集的蛋白质。内质网中的蛋白质聚集可能是由于蛋白质的内在特性(内质网中的疏水残基)、氧化应激或营养物质消耗造成的。内质网具有质量控制机制[伴侣功能,内质网相关蛋白降解(ERAD)和自噬],以确保只有正确折叠的蛋白质才能离开内质网并进入顺式高尔基室。内质网中蛋白质折叠的扰动激活未折叠蛋白反应(UPR),从而提高内质网蛋白的折叠能力和效率,并降解错误折叠的蛋白质。错误折叠的蛋白质在内质网中积累到超过内质网伴侣折叠能力的水平是加剧蛋白质聚集的一个主要因素。内质网中阻止蛋白质聚集的最重要的内质网驻留蛋白是热休克蛋白70 (HSP70)同源物BiP/GRP78,它是一种肽依赖的ATP酶,可以结合未折叠/错误折叠的蛋白质,并在ATP结合时释放它们。由于外源因素也可以减少内质网中蛋白质的错误折叠和聚集,如化学伴侣和抗氧化剂,这些治疗方法对内质网蛋白质聚集相关疾病具有潜在的治疗益处。
{"title":"Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum.","authors":"Juthakorn Poothong,&nbsp;Insook Jang,&nbsp;Randal J Kaufman","doi":"10.1007/978-3-030-67696-4_6","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_6","url":null,"abstract":"<p><p>Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"115-143"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802734/pdf/nihms-1760500.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. 钙网蛋白及其突变体对健康和疾病中内质网功能的影响。
Q2 Medicine Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-67696-4_8
Najla Arshad, Peter Cresswell

The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.

内质网(ER)执行关键的细胞功能,包括蛋白质合成,脂质代谢和信号传导。虽然这些功能在空间上孤立于内质网结构不同的区域,但通路之间存在串扰。参与内质网功能的一个重要参与者是内质网驻留蛋白钙网蛋白(CALR)。它是一种钙离子依赖性凝集素伴侣,主要协助内质网中的糖蛋白合成,作为蛋白质质量控制机制的一部分。CALR也缓冲钙离子释放和介导其他不依赖聚糖的蛋白质相互作用。CALR突变已在慢性血液肿瘤中被报道,称为骨髓增生性肿瘤。这些突变包括CALR基因的插入或缺失,它们都引起阅读框+ 1bp的位移,并导致CALR c端结构域氨基酸序列的显著改变。这会改变CALR功能,影响细胞内稳态。本章将讨论CALR和突变CALR如何影响ER的健康和疾病。
{"title":"Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease.","authors":"Najla Arshad,&nbsp;Peter Cresswell","doi":"10.1007/978-3-030-67696-4_8","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_8","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"163-180"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in molecular and subcellular biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1