{"title":"MOF particles (UiO-66 and UiO-66(Ce))/cellulose nanocomposite separators with regulating ion transport controllably for lithium battery","authors":"Jiajin Zhang , Zixuan Zhang , Tong Wu , Xiaogang Luo","doi":"10.1016/j.jelechem.2023.117708","DOIUrl":null,"url":null,"abstract":"<div><p>Commercial separators result in poor lithium battery performance due to low electrolyte wettability and non-selective ion transport. In this work, the cellulose membrane with excellent electrolyte wettability was selected as the skeleton, and the MOF nanoparticles were added by the blending method. The composite cellulose membrane with uniform pore size was prepared by casting process. The cellulose membrane skeleton promoted the absorption of electrolytes. The Lewis acid sites presented in UiO-66 facilitated the dissociation of lithium salts by attracting PF<sub>6</sub><sup>−</sup> anions. The OMS (open metal site) provided by UiO-66(Ce) further adsorbs anions and solvent molecules, effectively regulated ion transport, maintained a stable and efficient cycle life, and reduced lithium dendrite deposition. The LiFePO<sub>4</sub>/Li equipped with UiO-66/CM showed a capacity retention rate of 71.70%, while the LiFePO<sub>4</sub>/Li equipped with UiO-66 (Ce)/CM showed a capacity retention rate of 93.80 % after 200 cycles at 0.5C. Therefore, the developed strategy may provide a powerful way to improve electrolyte wettability and effectively regulate ion transport.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117708"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005684","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial separators result in poor lithium battery performance due to low electrolyte wettability and non-selective ion transport. In this work, the cellulose membrane with excellent electrolyte wettability was selected as the skeleton, and the MOF nanoparticles were added by the blending method. The composite cellulose membrane with uniform pore size was prepared by casting process. The cellulose membrane skeleton promoted the absorption of electrolytes. The Lewis acid sites presented in UiO-66 facilitated the dissociation of lithium salts by attracting PF6− anions. The OMS (open metal site) provided by UiO-66(Ce) further adsorbs anions and solvent molecules, effectively regulated ion transport, maintained a stable and efficient cycle life, and reduced lithium dendrite deposition. The LiFePO4/Li equipped with UiO-66/CM showed a capacity retention rate of 71.70%, while the LiFePO4/Li equipped with UiO-66 (Ce)/CM showed a capacity retention rate of 93.80 % after 200 cycles at 0.5C. Therefore, the developed strategy may provide a powerful way to improve electrolyte wettability and effectively regulate ion transport.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.