On the corrosion of a high solute Al-Zn-Mg alloy produced by laser powder bed fusion

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Science Pub Date : 2021-08-15 DOI:10.1016/j.corsci.2021.109626
A.P. Babu , S. Choudhary , J.C. Griffith , A. Huang , N. Birbilis
{"title":"On the corrosion of a high solute Al-Zn-Mg alloy produced by laser powder bed fusion","authors":"A.P. Babu ,&nbsp;S. Choudhary ,&nbsp;J.C. Griffith ,&nbsp;A. Huang ,&nbsp;N. Birbilis","doi":"10.1016/j.corsci.2021.109626","DOIUrl":null,"url":null,"abstract":"<div><p>An additively manufactured aluminium alloy with very high solute content, Al-14Zn-3Mg (wt. %), was studied herein. Compared to wrought AA7075-T6 as a benchmark, Al-14Zn-3Mg revealed a lower rate of corrosion, attributed to its microstructure and solute content. Specifically, the lack of coarse intermetallic particles in the Al-14Zn-3Mg led to reduced cathodic kinetics relative to AA7075-T6. Potentiodynamic polarisation tests and electrochemical impedance spectroscopy analysis was performed, along with XPS studies of the corresponding surface films. The findings herein demonstrate the corrosion behaviour of a new high solute aluminium alloy manufactured in net shape through LPBF.</p></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"189 ","pages":"Article 109626"},"PeriodicalIF":7.4000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.corsci.2021.109626","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X21003929","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 21

Abstract

An additively manufactured aluminium alloy with very high solute content, Al-14Zn-3Mg (wt. %), was studied herein. Compared to wrought AA7075-T6 as a benchmark, Al-14Zn-3Mg revealed a lower rate of corrosion, attributed to its microstructure and solute content. Specifically, the lack of coarse intermetallic particles in the Al-14Zn-3Mg led to reduced cathodic kinetics relative to AA7075-T6. Potentiodynamic polarisation tests and electrochemical impedance spectroscopy analysis was performed, along with XPS studies of the corresponding surface films. The findings herein demonstrate the corrosion behaviour of a new high solute aluminium alloy manufactured in net shape through LPBF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光粉末床熔合法制备高溶质Al-Zn-Mg合金的腐蚀研究
本文研究了一种具有很高溶质含量Al-14Zn-3Mg (wt. %)的增材制造铝合金。与变形后的AA7075-T6相比,Al-14Zn-3Mg合金的腐蚀速率较低,这主要归功于其显微组织和溶质含量。具体来说,Al-14Zn-3Mg中缺乏粗金属间颗粒导致阴极动力学相对于AA7075-T6降低。进行了动电位极化测试和电化学阻抗谱分析,并对相应的表面膜进行了XPS研究。本文的研究结果证明了一种新型高溶质铝合金通过LPBF以净形制造的腐蚀行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
期刊最新文献
Early-stage corrosion sensing via sequential fluorescence from sol-gel and ZnO layers: Self-healing ZIF-8 film-based composite coatings for aluminum alloys Editorial Board Fabrication and corrosion behavior of plasma electrolytic oxidation (PEO) coatings on Zn-deposited carbon steel First-principles insights into the chloride ion-mediated destabilization of cuprous oxide films in aqueous environment Mechanistic insights into γ/γ′-NiPt-diffused coating: Improved oxidation resistance and coating/substrate compatibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1