JUNO physics and detector

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Progress in Particle and Nuclear Physics Pub Date : 2022-03-01 DOI:10.1016/j.ppnp.2021.103927
JUNO Collaboration
{"title":"JUNO physics and detector","authors":"JUNO Collaboration","doi":"10.1016/j.ppnp.2021.103927","DOIUrl":null,"url":null,"abstract":"<div><p><span>The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3–4</span><span><math><mi>σ</mi></math></span><span> significance and the neutrino oscillation parameters </span><span><math><mrow><msup><mrow><mo>sin</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>12</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mn>21</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><mo>|</mo><mi>Δ</mi><msubsup><mrow><mi>m</mi></mrow><mrow><mn>32</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>|</mo></mrow></math></span><span> can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos<span> from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3</span></span><span><math><mi>σ</mi></math></span> significance; a lower limit of the proton lifetime, <span><math><mrow><mn>8</mn><mo>.</mo><mn>34</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>33</mn></mrow></msup></mrow></math></span> years (90% C.L.), can be set by searching for <span><math><mrow><mi>p</mi><mo>→</mo><mover><mrow><mi>ν</mi></mrow><mrow><mo>̄</mo></mrow></mover><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span><span><span>; detection of solar neutrinos would shed new light on the solar </span>metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to </span><span><math><mrow><mo>∼</mo><mn>5000</mn></mrow></math></span> inverse-beta-decay events and <span><math><mrow><mo>∼</mo><mn>2000</mn></mrow></math></span> (300) all-flavor neutrino–proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of <span><math><mrow><mo>∼</mo><mn>400</mn></mrow></math></span><span> events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&amp;D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the </span><span><math><mrow><mo>&gt;</mo><mn>20</mn></mrow></math></span> m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the <span><math><mrow><mo>&gt;</mo><mn>96</mn><mtext>%</mtext></mrow></math></span><span> transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of </span><span><math><mrow><mn>3</mn><mo>.</mo><mn>02</mn><mtext>%</mtext><mo>/</mo><msqrt><mrow><mi>E</mi><mi>(MeV )</mi></mrow></msqrt></mrow></math></span> in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <span><math><mrow><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <span><math><mrow><mo>&lt;</mo><mn>10</mn></mrow></math></span> mBq/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Acrylic panels of radiopurity <span><math><mrow><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span> ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to <span><math><mrow><mo>∼</mo><mn>10</mn><mspace></mspace><mi>Hz</mi></mrow></math></span><span><span>. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility </span>OSIRIS, and a near detector TAO.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"123 ","pages":"Article 103927"},"PeriodicalIF":14.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641021000880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 142

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator detector in a laboratory at 700-m underground. An excellent energy resolution and a large fiducial volume offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. With six years of data, the neutrino mass ordering can be determined at a 3–4σ significance and the neutrino oscillation parameters sin2θ12, Δm212, and |Δm322| can be measured to a precision of 0.6% or better, by detecting reactor antineutrinos from the Taishan and Yangjiang nuclear power plants. With ten years of data, neutrinos from all past core-collapse supernovae could be observed at a 3σ significance; a lower limit of the proton lifetime, 8.34×1033 years (90% C.L.), can be set by searching for pν̄K+; detection of solar neutrinos would shed new light on the solar metallicity problem and examine the vacuum-matter transition region. A typical core-collapse supernova at a distance of 10 kpc would lead to 5000 inverse-beta-decay events and 2000 (300) all-flavor neutrino–proton (electron) elastic scattering events in JUNO. Geo-neutrinos can be detected with a rate of 400 events per year. Construction of the detector is very challenging. In this review, we summarize the final design of the JUNO detector and the key R&D achievements, following the Conceptual Design Report in 2015 (Djurcic et al., 2015). All 20-inch PMTs have been procured and tested. The average photon detection efficiency is 28.9% for the 15,000 MCP PMTs and 28.1% for the 5000 dynode PMTs, higher than the JUNO requirement of 27%. Together with the >20 m attenuation length of the liquid scintillator achieved in a 20-ton pilot purification test and the >96% transparency of the acrylic panel, we expect a yield of 1345 photoelectrons per MeV and an effective relative energy resolution of 3.02%/E(MeV ) in simulations (Abusleme et al., 2021). To maintain the high performance, the underwater electronics is designed to have a loss rate <0.5% in six years. With degassing membranes and a micro-bubble system, the radon concentration in the 35 kton water pool could be lowered to <10 mBq/m3. Acrylic panels of radiopurity <0.5 ppt U/Th for the 35.4-m diameter liquid scintillator vessel are produced with a dedicated production line. The 20 kton liquid scintillator will be purified onsite with Alumina filtration, distillation, water extraction, and gas stripping. Together with other low background handling, singles in the fiducial volume can be controlled to 10Hz. The JUNO experiment also features a double calorimeter system with 25,600 3-inch PMTs, a liquid scintillator testing facility OSIRIS, and a near detector TAO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朱诺物理和探测器
江门地下中微子天文台(JUNO)是一个20万吨的液体闪烁探测器,位于地下700米的实验室。出色的能量分辨率和巨大的基准体积为解决中微子和天体粒子物理学中的许多重要问题提供了令人兴奋的机会。通过对台山核电站和阳江核电站反应堆反中微子的6年观测,中微子的质量有序度在3-4σ显著性范围内,中微子振荡参数sin2θ12、Δm212和|Δm322|的测量精度在0.6%以上。根据10年的数据,所有过去的核心坍缩超新星的中微子都能以3σ显著性被观测到;质子寿命的下限为8.34×1033年(90% c.l),可通过搜索p→ν K+来确定;太阳中微子的探测将为太阳金属丰度问题提供新的线索,并对真空-物质过渡区进行研究。在JUNO中,一个典型的距离为10 kpc的核心坍缩超新星将导致~ 5000个反β衰变事件和~ 2000(300)个全风味中微子-质子(电子)弹性散射事件。地球中微子可以以每年约400次的速度被探测到。探测器的建造非常具有挑战性。在这篇综述中,我们总结了JUNO探测器在2015年概念设计报告之后的最终设计和关键研发成果(Djurcic et al., 2015)。所有20英寸pmt都已采购并经过测试。15000 MCP pmt的平均光子探测效率为28.9%,5000 dynode pmt的平均光子探测效率为28.1%,高于JUNO要求的27%。再加上液体闪烁体在20吨中试净化试验中获得的20米衰减长度和丙烯酸面板的96%透明度,我们预计在模拟中产生1345个光电子/ MeV,有效的相对能量分辨率为3.02%/E(MeV) (Abusleme等人,2021)。为了保持高性能,水下电子设备的设计在六年内具有0.5%的损失率。采用脱气膜和微泡系统,可将35kt水池中的氡浓度降至10 mBq/m3。直径35.4 m的液体闪烁容器用专用生产线生产放射性纯度<0.5 ppt U/Th的亚克力板。20吨的液体闪烁体将在现场通过氧化铝过滤、蒸馏、水萃取和气体剥离进行净化。与其他低背景处理一起,基准音量中的单频可以控制到~ 10Hz。朱诺实验还配备了一个双量热计系统,有25,600个3英寸pmt,一个液体闪烁体测试设备OSIRIS和一个近探测器TAO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
期刊最新文献
From density response to energy functionals and back: An ab initio perspective on matter under extreme conditions Lattice perspectives on doubly heavy tetraquarks Editorial Board Hard Thermal Loop—Theory and applications Relativistic hydrodynamics under rotation: Prospects and limitations from a holographic perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1