Danielle M. Fitzgerald , Yolonda L. Colson , Mark W. Grinstaff
{"title":"Synthetic pressure sensitive adhesives for biomedical applications","authors":"Danielle M. Fitzgerald , Yolonda L. Colson , Mark W. Grinstaff","doi":"10.1016/j.progpolymsci.2023.101692","DOIUrl":null,"url":null,"abstract":"<div><p>Pressure sensitive adhesives are components of everyday products found in homes, offices, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties<span><span><span> of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the </span>viscoelastic material<span> requirements as well as the intermolecular interactions<span> at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of </span></span></span>synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"142 ","pages":"Article 101692"},"PeriodicalIF":26.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237363/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000473","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Pressure sensitive adhesives are components of everyday products found in homes, offices, and hospitals. Serving the general purpose of fissure repair and object fixation, pressure sensitive adhesives indiscriminately bind surfaces, as long as contact pressure is administered at application. With that being said, the chemical and material properties of the adhesive formulation define the strength of a pressure sensitive adhesive to a particular surface. Given our increased understanding of the viscoelastic material requirements as well as the intermolecular interactions at the binding interface required for functional adhesives, pressure sensitive adhesives are now being explored for greater use. New polymer formulations impart functionality and degradability for both internal and external applications. This review highlights the structure-property relationships between polymer architecture and pressure sensitive adhesion, specifically for medicine. We discuss the rational, molecular-level design of synthetic polymers for durable, removable, and biocompatible adhesion to wet surfaces like tissue. Finally, we examine prevalent challenges in biomedical wound closure and the new, innovative strategies being employed to address them. We conclude by summarizing the progress of current research, identifying additional clinical opportunities, and discussing future prospects.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.