{"title":"Consequences of nongenomic actions of estradiol on pathogenic genital tract response.","authors":"Paula Solar, Luis Velasquez","doi":"10.1186/1750-2187-8-1","DOIUrl":null,"url":null,"abstract":"<p><p> Estradiol is a steroid hormone that regulates the structure and function of the female reproductive system. In addition to its genomic effects, which are mediated by activated nuclear receptors, estradiol elicits a variety of rapid signaling events independently of transcriptional or genomic regulation. These nongenomic actions influence the milieu of the genital tract, which changes the ability of pathogens to infect the genital tract. This review discusses our current knowledge regarding the mechanisms and relevance of nongenomic estradiol signaling in the genital tract that could change the ability of pathogens to invade epithelial cells. PubMed was searched through January 1980 for papers related to estradiol actions in the ovary, fallopian tube, uterus and cervix. The mechanisms conveying these rapid effects consist of a multitude of signaling molecules and include cross-talk with slower transcriptional actions. The nongenomic actions of estradiol that influence the infectious abilities of pathogens occur either directly on the genital tract cells or indirectly by modulating the local and systemic immune systems. Additional in-depth characterization of the response is required before the normal and pathological reproductive functions of the nongenomic estradiol pathway can be targeted for pharmacological intervention.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-8-1","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-8-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18
Abstract
Estradiol is a steroid hormone that regulates the structure and function of the female reproductive system. In addition to its genomic effects, which are mediated by activated nuclear receptors, estradiol elicits a variety of rapid signaling events independently of transcriptional or genomic regulation. These nongenomic actions influence the milieu of the genital tract, which changes the ability of pathogens to infect the genital tract. This review discusses our current knowledge regarding the mechanisms and relevance of nongenomic estradiol signaling in the genital tract that could change the ability of pathogens to invade epithelial cells. PubMed was searched through January 1980 for papers related to estradiol actions in the ovary, fallopian tube, uterus and cervix. The mechanisms conveying these rapid effects consist of a multitude of signaling molecules and include cross-talk with slower transcriptional actions. The nongenomic actions of estradiol that influence the infectious abilities of pathogens occur either directly on the genital tract cells or indirectly by modulating the local and systemic immune systems. Additional in-depth characterization of the response is required before the normal and pathological reproductive functions of the nongenomic estradiol pathway can be targeted for pharmacological intervention.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.