{"title":"Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells.","authors":"C Vercelli, R Barbero, B Cuniberti, R Odore, G Re","doi":"10.1111/vco.12028","DOIUrl":null,"url":null,"abstract":"<p><p>As canine mammary tumours (CMT) and human breast cancer share clinical and prognostic features, the former have been proposed as a model to study carcinogenesis and improved therapeutic treatment in human breast cancer. In recent years, it has been shown that transient receptor potential vanilloid 1 (TRPV1) is expressed in different neoplastic tissues and its activation has been associated with regulation of cancer growth and progression. The aim of the present research was to demonstrate the presence of TRPV1 in human and canine mammary cancer cells, MCF-7 and CF.41, respectively, and to study the role of TRPV1 in regulating cell proliferation. The images obtained by Western blot showed a signal at 100 kDa corresponding to the molecular weight of TRPV1 receptor. All tested TRPV1 agonists and antagonists caused a significant decrease (P < 0.05) of cell growth rate in MCF-7 cells. By contrast, in CF.41 cells capsaicin and capsazepine induced a significant increase (P < 0.05) in cell proliferation, whereas resiniferatoxin (RTX) and 5-iodo-resiniferatoxin (5-I-RTX) had no influence on CF.41 cell proliferation. Further studies are needed to elucidate the underlying molecular mechanism responsible for the different effects evoked by TRPV1 activation in MCF-7 and CF.41 cells. </p>","PeriodicalId":23693,"journal":{"name":"Veterinary and comparative oncology","volume":"13 2","pages":"133-42"},"PeriodicalIF":2.3000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/vco.12028","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary and comparative oncology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vco.12028","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 27
Abstract
As canine mammary tumours (CMT) and human breast cancer share clinical and prognostic features, the former have been proposed as a model to study carcinogenesis and improved therapeutic treatment in human breast cancer. In recent years, it has been shown that transient receptor potential vanilloid 1 (TRPV1) is expressed in different neoplastic tissues and its activation has been associated with regulation of cancer growth and progression. The aim of the present research was to demonstrate the presence of TRPV1 in human and canine mammary cancer cells, MCF-7 and CF.41, respectively, and to study the role of TRPV1 in regulating cell proliferation. The images obtained by Western blot showed a signal at 100 kDa corresponding to the molecular weight of TRPV1 receptor. All tested TRPV1 agonists and antagonists caused a significant decrease (P < 0.05) of cell growth rate in MCF-7 cells. By contrast, in CF.41 cells capsaicin and capsazepine induced a significant increase (P < 0.05) in cell proliferation, whereas resiniferatoxin (RTX) and 5-iodo-resiniferatoxin (5-I-RTX) had no influence on CF.41 cell proliferation. Further studies are needed to elucidate the underlying molecular mechanism responsible for the different effects evoked by TRPV1 activation in MCF-7 and CF.41 cells.
期刊介绍:
Veterinary and Comparative Oncology (VCO) is an international, peer-reviewed journal integrating clinical and scientific information from a variety of related disciplines and from worldwide sources for all veterinary oncologists and cancer researchers concerned with aetiology, diagnosis and clinical course of cancer in domestic animals and its prevention. With the ultimate aim of diminishing suffering from cancer, the journal supports the transfer of knowledge in all aspects of veterinary oncology, from the application of new laboratory technology to cancer prevention, early detection, diagnosis and therapy. In addition to original articles, the journal publishes solicited editorials, review articles, commentary, correspondence and abstracts from the published literature. Accordingly, studies describing laboratory work performed exclusively in purpose-bred domestic animals (e.g. dogs, cats, horses) will not be considered.