Electrochemical and microscopic characterization of titanium dioxide electrodes modified with platinum nanoparticles

IF 4.5 3区 化学 Q1 Chemical Engineering Journal of Electroanalytical Chemistry Pub Date : 2023-08-14 DOI:10.1016/j.jelechem.2023.117717
Francisco A. Filippin , Mariana I. Rojas , Lucía B. Avalle
{"title":"Electrochemical and microscopic characterization of titanium dioxide electrodes modified with platinum nanoparticles","authors":"Francisco A. Filippin ,&nbsp;Mariana I. Rojas ,&nbsp;Lucía B. Avalle","doi":"10.1016/j.jelechem.2023.117717","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates glass/Ti/Pt/TiO<sub>2</sub> surfaces, wherein Pt nanoparticles (NPs) were potentiostatically deposited with an amount of Pt that varies based on deposition time. The size and distribution of NPs were analyzed by scanning electron microscopy (SEM). Subsequently, a thicker titanium dioxide film was grown via anodization. Topography and roughness were examined by atomic force microscopy (AFM). Remarkably, TiO<sub>2</sub> grows independently of Pt NPs and remains stable under working conditions, including acid, neutral, and alkaline media. Under steady-state conditions, the open circuit potentials (OCPs) of the modified semiconductor/electrolyte interfaces corresponding to 1, 5, and 10 s of electrodeposited Pt, showed a shift of 167 mV, 42 mV, and 24 mV toward more positive values, respectively. Notably, these surfaces exhibit the activity of a Pt quasi-electrode and the band structure of a titanium dioxide semiconductor, making them ideal for use as photoanodes. In addition, it can be highlighted that the methodology employed in the preparation of the surfaces allows for reproducibility.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117717"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005775","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates glass/Ti/Pt/TiO2 surfaces, wherein Pt nanoparticles (NPs) were potentiostatically deposited with an amount of Pt that varies based on deposition time. The size and distribution of NPs were analyzed by scanning electron microscopy (SEM). Subsequently, a thicker titanium dioxide film was grown via anodization. Topography and roughness were examined by atomic force microscopy (AFM). Remarkably, TiO2 grows independently of Pt NPs and remains stable under working conditions, including acid, neutral, and alkaline media. Under steady-state conditions, the open circuit potentials (OCPs) of the modified semiconductor/electrolyte interfaces corresponding to 1, 5, and 10 s of electrodeposited Pt, showed a shift of 167 mV, 42 mV, and 24 mV toward more positive values, respectively. Notably, these surfaces exhibit the activity of a Pt quasi-electrode and the band structure of a titanium dioxide semiconductor, making them ideal for use as photoanodes. In addition, it can be highlighted that the methodology employed in the preparation of the surfaces allows for reproducibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米铂修饰二氧化钛电极的电化学和微观表征
本研究研究了玻璃/Ti/Pt/TiO2表面,其中Pt纳米颗粒(NPs)被电位沉积,其数量根据沉积时间而变化。用扫描电镜(SEM)分析了NPs的大小和分布。随后,通过阳极氧化生长出较厚的二氧化钛膜。采用原子力显微镜(AFM)检测其形貌和粗糙度。值得注意的是,TiO2独立于Pt NPs生长,并在酸性、中性和碱性介质下保持稳定。在稳态条件下,修饰后的半导体/电解质界面的开路电位(ocp)分别在电沉积Pt的1、5和10 s时呈现出167 mV、42 mV和24 mV的正向位移。值得注意的是,这些表面表现出铂类电极的活性和二氧化钛半导体的能带结构,使它们成为理想的光阳极。此外,可以强调的是,在制备表面时采用的方法允许再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Symmetrical dicyano-based imidazole molecule-assisted crystallization and defects passivation for high-performance perovskite solar cells 4,4′-Biphenyldicarboxylic acid as an anode for sodium-ion batteries: Different electrochemical behaviors in ester and ether-based electrolytes Cobalt-regulated NiFe-LDH for efficient electrocatalytic oxygen evolution in alkaline simulated industrial sewage and natural seawater Self-assembly crack metallic network applied on light-addressable potentiometric sensor for optimizing photoelectric conversion efficiency Continuous glucose metabolism monitoring platform for long-term analysis of tumor cell proliferation and drug response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1