Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft.

Q2 Biochemistry, Genetics and Molecular Biology Cell Communication and Adhesion Pub Date : 2013-10-01 Epub Date: 2013-09-16 DOI:10.3109/15419061.2013.833191
Esmaeil Biazar, Saeed Heidari Keshel, Majid Pouya
{"title":"Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft.","authors":"Esmaeil Biazar,&nbsp;Saeed Heidari Keshel,&nbsp;Majid Pouya","doi":"10.3109/15419061.2013.833191","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to develop a nanofibrous polymeric nerve conduit with Schwann cells (SCs) and to evaluate its efficiency on the promotion of functional and locomotive activities in rats. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the rats were monitored and evaluated by behavioral analyses such as toe out angle, toe spreading analysis, walking track analysis, extensor postural thrust, open-field analysis, swimming test and nociceptive function, four months post surgery. Four months post-operatively, the results from behavioral analyses demonstrated that in the grafted groups especially in the grafted group with SCs, the rat sciatic nerve trunk had been reconstructed with functional recovery such as walking, swimming and recovery of nociceptive function. This study proves the feasibility of artificial conduit with SCs for nerve regeneration by bridging a longer defect in the rat model.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"20 5","pages":"93-103"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2013.833191","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2013.833191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/9/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 39

Abstract

The aim of this study is to develop a nanofibrous polymeric nerve conduit with Schwann cells (SCs) and to evaluate its efficiency on the promotion of functional and locomotive activities in rats. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the rats were monitored and evaluated by behavioral analyses such as toe out angle, toe spreading analysis, walking track analysis, extensor postural thrust, open-field analysis, swimming test and nociceptive function, four months post surgery. Four months post-operatively, the results from behavioral analyses demonstrated that in the grafted groups especially in the grafted group with SCs, the rat sciatic nerve trunk had been reconstructed with functional recovery such as walking, swimming and recovery of nociceptive function. This study proves the feasibility of artificial conduit with SCs for nerve regeneration by bridging a longer defect in the rat model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米纤维PHBV导管填充雪旺细胞作为人工神经移植物再生大鼠坐骨神经的行为学评价。
本研究的目的是利用雪旺细胞(SCs)制备纳米纤维聚合物神经导管,并评价其对大鼠神经功能和运动活性的促进作用。将导管植入大鼠坐骨神经30mm间隙内。术后4个月对大鼠进行足跖外伸角、足跖伸展分析、步行轨迹分析、伸肌体位推力、开阔场分析、游泳试验、伤害功能等行为学分析和评价。术后4个月,行为学分析结果显示,移植组特别是SCs移植组大鼠坐骨神经干重建,行走、游泳等功能恢复,伤害功能恢复。本研究在大鼠模型上证实了SCs人工导管通过桥接较长缺损进行神经再生的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Communication and Adhesion
Cell Communication and Adhesion 生物-生化与分子生物学
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems. The journal welcomes submission of original research articles, reviews, short communications and conference reports.
期刊最新文献
Krüppel-like factor 4 mediates cellular migration and invasion by altering RhoA activity. Establishment and characterization of a carcinoma-associated fibroblast cell line derived from a human salivary gland adenoid cystic carcinoma. Fabrication of nanofiber coated with l-arginine via electrospinning technique: a novel nanomatrix to counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells. Pannexin1 Single Nucleotide Polymorphism and Platelet Reactivity in a Cohort of Cardiovascular Patients Phosphatidylethanolamine Deficiency Impairs Escherichia coli Adhesion by Downregulating Lipopolysaccharide Synthesis, Which is Reversible by High Galactose/Lactose Cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1