Guanyun Gao , Wensi Wang , Yanling Wang , Ziqi Fu , Lu Liu , Yunmei Du , Zhenjiang Li , Yanru Liu , Lei Wang
{"title":"Synergistic coupling of NiCoS nanorods with NiCo-LDH nanosheets towards highly efficient hydrogen evolution reaction in alkaline media","authors":"Guanyun Gao , Wensi Wang , Yanling Wang , Ziqi Fu , Lu Liu , Yunmei Du , Zhenjiang Li , Yanru Liu , Lei Wang","doi":"10.1016/j.jelechem.2023.117622","DOIUrl":null,"url":null,"abstract":"<div><p>As the key step in the overall water splitting system, hydrogen evolution reaction (HER) has become one of the main methods of hydrogen production in industrial applications. Here, through the strong coupling between NiCo-LDH nanosheets and NiCoS nanorods, the three-dimensional heterogeneous structure formed by the composite can provide a large catalytic specific surface area. The modification of LDH lamellar will provide abundant edge active sites and enhance its structural stability. The synergistic effect of NiCo-LDH and NiCoS can optimize the electronic structure and promote mass transfer and water cracking. Benefiting from the above points, the NiCoS@NiCo-LDH/NF obtained showed the significant boost in HER process. It only required 99 mV to reach current density of 10 mA·cm<sup>−2</sup> and maintained excellent durability for 24 h for HER, which proved NiCoS@NiCo-LDH/NF was a cost-free, high-efficient and outstandingly stable HER catalyst in basic solution.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"943 ","pages":"Article 117622"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723004824","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
As the key step in the overall water splitting system, hydrogen evolution reaction (HER) has become one of the main methods of hydrogen production in industrial applications. Here, through the strong coupling between NiCo-LDH nanosheets and NiCoS nanorods, the three-dimensional heterogeneous structure formed by the composite can provide a large catalytic specific surface area. The modification of LDH lamellar will provide abundant edge active sites and enhance its structural stability. The synergistic effect of NiCo-LDH and NiCoS can optimize the electronic structure and promote mass transfer and water cracking. Benefiting from the above points, the NiCoS@NiCo-LDH/NF obtained showed the significant boost in HER process. It only required 99 mV to reach current density of 10 mA·cm−2 and maintained excellent durability for 24 h for HER, which proved NiCoS@NiCo-LDH/NF was a cost-free, high-efficient and outstandingly stable HER catalyst in basic solution.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.